
A P P L I E D  M A T H E M A T I C S

The SciDAC Applied Partial Differential Equations Center for Enabling Technologies
(APDEC) strives to advance scientific discovery through the development of
applied mathematics.  Researchers working on SciDAC Science Application
projects and non-SciDAC scientists both depend on APDEC’s simulation tools for
solving complex problems in scientific fields such as combustion, magnetic fusion,
astrophysics, and accelerator modeling.

Applied Math for Applied Science
Many important scientific problems—such as
combustion, magnetic fusion, systems biology,
and climate change—involve multiple physical
processes operating on multiple space and time
scales. For these kinds of problems, the compo-
nents of simulation become quite complicated, as
well as strongly linked. The high level of uncer-
tainty and empiricism involved in the design of
such mathematical models contrasts the more
cooperative “first principles” models used in other
areas of science. The choice of model depends not
only on the resolved scales, but also on the spe-
cific scientific question being asked. Even when
the models are well-characterized, there is often
an incomplete understanding of fundamental
mathematical issues, such as well-posedness.

There is still a great deal of coherence in the
underlying mathematical representations of these
problems. They are all described in terms of var-
ious generalizations of the classical elliptic, para-
bolic, and hyperbolic partial differential equations
(PDE) of mathematical physics. The enormous
variety and subtlety found in these applications
comes from the way the PDEs are coupled, gen-
eralized, and combined with models for other
physical processes. The complexity of these mod-
els leads to a diverse collection of requirements
on the numerical methods, with many open
questions about the stability of coupled algo-
rithms. Model complexity also makes it very dif-
ficult to obtain high performance. There are
tradeoffs between the models, the discretizations,

and the software, with a combination of analy-
sis and computational experiments used to
explore the design space. This places a premium
on the availability of a diverse and agile software
toolset to enable experimentation. 

The SciDAC Applied Partial Differential Equa-
tions Center for Enabling Technologies (APDEC)
is developing a collection of algorithmic and soft-
ware components that can be assembled to sim-
ulate a broad range of complex multicomponent
physical systems in which PDEs play a central
role. Specifically, APDEC’s goal is to enable the
agile development of high-performance simula-
tion codes for complex multiphysics and multi-
scale applications by providing a flexible toolset
that meets three requirements—capability,
expressiveness, and performance.

Capability involves a sufficient variety of tools
to support the broadest possible range of appli-
cations, as well as the ability to combine the tools
in as many ways as possible. Expressiveness is a
concept defined as a factoring of the tools so that
nonessential details are hidden from the users
who do not need them, while still allowing access
to those details for users who want to customize
the capabilities in the software. Performance deals
with optimizing the implementation of tools to
obtain the highest possible performance on high-
end computing platforms.

The development of simulation software for
complex applications is an end-to-end activity,
with the choices regarding models, discretiza-
tions, and software all strongly interacting with
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Figure 1.  An image from an adaptive mesh refinement (AMR) particle-in-cell (PIC) calculation.

P
. C

O
LE

LLA, LB
N

L

one another, and with fundamental mathemati-
cal questions that underlie these choices. For that
reason, APDEC researchers work closely with
applications developers in all aspects of simula-
tion code design. In particular, members of the
APDEC team are taking the lead on the develop-
ment of new simulation capabilities in two appli-
cations areas—magnetohydrodynamic (MHD)
modeling of tokamaks, and combustion. In addi-
tion, APDEC is collaborating with other SciDAC
projects in accelerator modeling and astrophysics
to assist them in using various components from
the APDEC software suite. Finally, as part of an
outreach effort, APDEC is working with investi-
gators on non-SciDAC projects in a broad range

of disciplines to assist in developing new simu-
lation capabilities (sidebar “Outreach Collabora-
tions,” p24).

The APDEC Approach 
The APDEC algorithmic approach is based on
finite-difference discretizations of PDEs on locally
structured grids, combined with techniques for
introducing adaptivity and irregular geometry,
plus methods for representing kinetic problems
using particles. 

In grid-based methods for numerical PDEs, it is
necessary to make a fundamental choice of dis-
cretization technologies. APDEC researchers have
chosen to use locally structured grids—ones that
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are based on defining discrete unknowns on a rec-
tangular discretization of the spatial independent
variables. Specifically, APDEC will mostly be using
the finite-volume approach, in which the rectan-
gular grid defines a collection of control volumes,
for which a natural discretization of the diver-
gence operator is obtained by integrating over the
control volume. This leads to methods that satisfy
discrete conservation laws, an essential feature for
computing discontinuous solutions to PDEs and
a desirable property for a much larger class of
physical problems. There is a large body of expe-
rience in how to construct stable and accurate dis-
cretizations to PDEs based on this approach for
a broad range of physics problems. Regularity in
space leads to regular data layouts, making it eas-
ier to optimize for various types of data locality.
The regular geometric structure of the spatial dis-

tribution of unknowns leads to efficient iterative
solvers for elliptic and parabolic problems. Cou-
pling to particle methods is inexpensive and well-
understood. Locating the particles on the grid is
trivial, and interpolation between particles and
fields has an extensive body of practical experi-
ence and mathematical analysis.

Treatment of Irregular Geometries
Two approaches are pursued in the treatment of
complex geometries, and both are based on the
discretizations on locally rectangular grids (fig-
ure 2). One is the use of mapped multiblock grids,
in which the computational domain is repre-
sented as a union of images of smooth maps from
rectangles in abstract coordinate spaces, with
boundaries that are aligned with one another. The
other approach is the cut-cell approach, in which
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As part of its outreach activities, APDEC works
with scientists from a broad range of
disciplines as they attempt to use the Center’s
software for their particular applications. The
following are some of the applications
currently under development.

The solution of gyrokinetic equations in four
to five dimensions (gyrokinetic phase space)
plus time to simulate the dynamics of the
plasma in the edge region of a tokomak is part
of a collaborative effort with the Edge
Simulation Laboratory, a joint project between
LBNL and LLNL.

APDEC is working with Dr. Francesco Miniati
of the Eidgenössische Technische Hochschule
(ETH) in Zürich on AMR cosmology code that
couples a finite-volume method for
compressible flow with a cell-centered AMR-PIC
algorithm for collisionless matter, with the two
components coupled through self-gravity.

In collaboration with researchers at
Standford University, APDEC is pursuing
simulations of nonlinear propagation of
internal waves over long distances in the
ocean, using embedded boundary AMR
algorithms and software to represent stratified

flows with realistic representations of
bathymetry.

A joint project between LBNL and the
California Department of Water Resources
involves embedded boundary AMR for two-
dimensional shallow-water equations in
realistic geometries to model the hydrology of
the San Francisco Bay and Delta.

APDEC researchers are working together with
Dr. Fotini Chow, University of California—
Berkeley, to develop simulation models that
are insensitive to discontinuous changes in
resolved length scales.

O u t r e a c h  C o l l a b o r a t i o n s  

Figure 2.  Representations of irregular geometry using structured grids. On the left, a mapped multiblock grid, with
grid lines in white, and the different blocks colored green, blue, red, and yellow. In the center, a node-centered cut-
cell grid. Unknowns are defined at intersections of grid lines, with special difference approximations applied at the
nodes near the irregular boundary. On the right, a volume-of-fluid cut-cell discretization. Exposed portions of cubic
control volumes not covered by the body—shown in orange—define the control volumes. Primary dependent variables
are defined at Cartesian cell centers (solid circles) and the divergence of fluxes is defined at the centroids (Xs).

APDEC researchers work
closely with applications
developers in all aspects
of simulation code design. 
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the irregular domain is represented by its inter-
section with a rectangular Cartesian grid. While
this approach can be applied to nodal-point dis-
cretizations, efforts are mostly being concen-
trated on the volume-of-fluid version of cut cells,
in which an irregular boundary is represented on
a rectangular grid by intersecting each rectangu-
lar cell with the boundary. This leads to natural
finite-volume discretizations of the solution to
the PDEs in the irregular domain that satisfy dis-
crete conservation laws. In the case where the sur-
face being represented in this way is an irregular
domain boundary, these methods are often
referred to as Cartesian grid or embedded bound-
ary methods.

The multiblocked mapped grid approach is
needed in applications for which anisotropies in
the model require the use of a grid that is aligned

with respect to those anisotropies to maintain
accuracy. Multiple blocks used in cases for which
a single rectangular coordinate mapping would
be too complicated or singular. This is the case for
atmospheric fluid dynamics, problems in subsur-
face flow modeling, and MHD modeling of toka-
maks—machines that generate magnetic fields
for confining plasma, which is critical to fusion
energy research. One of the principal advantages
to the cut-cell approach (figure 3) is the ease with
which the numerical grid generation problem,
often a major bottleneck in other methods, can
be solved. Researchers have developed a tool for
embedded boundary grid generation from Initial
Graphics Exchange Specification (IGES) descrip-
tions of complex engineering geometries that are
fully automatic and take only a modest amount
of computer time to generate grids for complex
engineering shapes. More recently, the APDEC
team has developed equally efficient techniques
for generating embedded boundary discretiza-
tions information from image data or geograph-
ical data specified as the zero set of some
function. The latter tools can also be used for grid
generation from level-set descriptions of moving
fronts.

Adaptive Mesh Refinement
The adaptive mesh methods used by APDEC are
based on block-structured adaptive mesh refine-
ment (AMR) algorithms. In this approach, the
regions to be refined are organized into rectangu-
lar patches of several hundred to several thousand
grid cells per patch (figure 4). Thus the high-res-
olution rectangular grid methods described
above can be used to advance the solution in time.
Furthermore, the overhead in managing the irreg-
ular data is amortized over relatively large
amounts of floating point work on regular arrays.
For time-dependent problems, refinement is per-
formed in time as well as in space. Each level of
spatial refinement uses its own stable time step,
with the time steps at a level constrained to be
integer multiples of the time steps at all finer levels.

One of the principal
advantages to the cut-
cell approach is the ease
with which the numerical
grid generation problem,
often a major bottleneck
in other methods, can be
solved. 

Figure 3.  Examples of cut-cell grid generation; these are
grids generated from a trachea with tracheostomy (upper
panel) and a magnetic resonance image (MRI) dataset
used to compute flow in a cerebral artery (lower panel).

Figure 4.  A block-structured nested refinement. The
white grid on the slicing planes define individual control
volumes. The black wire-frame shows the organization of
the refined region into blocks.
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AMR is a mature technology for problems with-
out geometry, with a variety of implementations
and applications for various nonlinear combina-
tions of elliptic, parabolic, and hyperbolic PDEs.
In particular, the collection of APDEC applica-
tions addresses most of the major algorithmic
issues in developing adaptive algorithms for the
applications described above, such as adaptive
multigrid solvers for Poisson’s equation, the rep-
resentation of non-ideal effects in MHD, and the
coupling of particle methods to AMR field
solvers. AMR has also been successfully coupled
to the mapped-grid and volume-of-fluid methods
for treating irregular geometries (figure 5).

Software Design
One of the principal characteristics of the algo-
rithms described is that they are difficult to imple-
ment, particularly on parallel computers. The
algorithms are more complicated than traditional
finite-difference methods, and often the data
structures involved are not easily represented in
the traditional procedural programming environ-
ments used in scientific computing. To manage

this algorithmic complexity, a collection of
libraries written in a mixture of Fortran and C++
are used to implement a domain-specific set of
abstractions for the combination of algorithms.
In this approach, the high-level data abstractions
are implemented in C++, while the bulk of the
floating point work is performed on rectangular
arrays by Fortran routines.

This design approach (sidebar “Developing
APDEC Software”) is based on two ideas. The first
is that the mathematical structure of the algo-
rithm domain maps naturally into a combination
of data structures and operations on those data
structures, which can be embodied in C++
classes. The second is that the mathematical
structure of the algorithms can be factored into a
hierarchy of abstractions, leading to an analogous
factorization of the framework into reusable
components, also called layers. This reusability is
realized by a combination of generic program-
ming and sub-classing. A principal advantage to
this design is the relative stability of the applica-
tion programming interfaces (API) as seen by the
applications developer. Implementations may
change considerably to enhance performance or
in response to changes in the architecture, but
these changes are less likely to cause major
upheavals to the applications programs. This is
because the APIs reflect the mathematical struc-
ture of the algorithms, which remain a relatively
fixed target.

The design of the APDEC AMR infrastructure
has a strong focus on high performance. At the
single processor level, most of the floating point
work on multidimensional arrays is performed
by calls to optimized Fortran. Data holders
defined on unions of rectangles are automatically
distributed over processors, and the predefined
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As with many scientific
endeavors that are
simply not practical for
the laboratory bench,
computational
experiments have
emerged as the only
reliable tools for
developing verifiable,
quantitative predictions.

Figure 5.  The combined AMR and embedded boundary method used to compute the
propagation of a supersonic jet into a vacuum. Each box corresponds to a refined grid
patch.

The design of the framework on which APDEC
software development is based consists of five
major components:

Layer 1—Classes for representing data and
computations on unions of rectangles,
including a mechanism for managing the
distribution of rectangular patches across
processors, and an interface to Fortran for
obtaining acceptable uniprocessor
performance. This is meant to support an
underlying coarse-grained model of parallelism
based on domain decomposition.

Layer 2—Classes for representing interlevel
interactions, such as averaging and
interpolation, interpolation of coarse–fine
boundary conditions, and managing
conservation at coarse–fine boundaries.

Layer 3—Interface classes that implement
control structures–such as Berger–Oliger
time-stepping, or various iterative methods
for solving linear systems–without knowing
the details of the data, using a combination
of inheritance and class templates.  Core
solver components for elliptic and

hyperbolic PDEs are developed based on
these classes.

Layer 4—Implementation of specific
applications or classes of applications using
these tools, such as an AMR method for
hyperbolic conservation laws or for
incompressible flow.

Utility Layer—Support for problem setup,
input/output, and visualization, including
providing interfaces to existing packages in
these areas.

D e v e l o p i n g  A P D E C  S o f t w a r e  
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aggregate copy operations include the communi-
cations calls implemented using Message Passing
Interface (MPI). These features, combined with
tools for load balancing, lead to software whose
computational cost per grid point and scalability
is comparable to that of uniform-grid calculations
using the same algorithms. For the original
Berger–Colella algorithm for hyperbolic conser-
vation laws, 75% efficiency was measured on up
to 1,024 processors on IBM SP and Hewlett-
Packard Alpha systems, and up to 32,000 proces-
sors on the IBM BlueGene/L using specialized
communication primitives available on that sys-
tem. For low-Mach number combustion, produc-
tion calculations on IBM SP and Silicon Graphics
(SGI) systems are typically done using between
512 and 4,096 processors.

All of the APDEC software resides in a Concur-
rent Versions System (CVS) repository, with
checkout access to collaborators through remote
CVS access. As various components of the soft-
ware reach the appropriate state of hardening,
they are made publicly available under a FreeBSD
license from the APDEC website. The current
public release version contains implementations
of the core Layer 1 through Layer 3 libraries,
including solvers for elliptic and hyperbolic PDEs
on unions of rectangles and AMR grid hierar-
chies. As part of the distribution APDEC also pro-
vides a number of complete applications
examples, such as AMR for gas dynamics, AMR
incompressible flow solvers, and solvers for a
variety of coupled fluid–particle problems (figure
6). The released software includes extensive
design documentation and an automatically gen-
erated web-based reference manual using the
doxygen system.

Applications
The APDEC Center has been involved with the
development of applications in a variety of ways.
Two projects—adaptive methods for low-Mach

number combustion and AMR for MHD models
for tokamaks—were funded directly as part of
APDEC. These projects have led to the develop-
ment of substantial algorithmic capabilities as
well as significant scientific investigations.
APDEC is also collaborating with a variety of
non-SciDAC investigators as part of the Center’s
outreach activities (sidebar “Outreach Collabora-
tions,” p24).

Simulating Flames
Turbulent combustion is a critical process for
both energy and transportation. The detailed
properties of turbulent chemistry interaction play
a key role in both efficiency of the combustion
process and emissions. In spite of its importance,
high-fidelity modeling of turbulent combustion
remains an elusive target. Detailed simulation of
turbulent combustion processes involves the
modeling of three-dimensional turbulent flow as
well as the complexities associated with the ther-
mochemical behavior of the system, such as reac-
tion mechanisms, thermodynamic properties,
and transport properties. These additional com-
plexities not only make combustion simulation a
challenging computational task, but also intro-
duce a dependence on the existing experimentally
determined characterization of the underlying
physical processes.

In combustion research APDEC’s goal is to
develop new predictive tools for modeling turbu-
lent combustion processes. Specifically, the Cen-
ter is modeling fluid-chemistry interactions with
sufficient fidelity to predict not only the basic ener-
getics, but also more detailed aspects of the behav-
ior, such as the formation of pollutants. Simulation
methods have been developed for solving the mul-
tispecies Navier–Stokes equations with chemical
reactions that generalized an AMR algorithm for
incompressible flow to the case of a low-Mach
number hydrodynamics formulation to eliminate
the time step constraint due to acoustic waves. The
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The design of the APDEC
AMR infrastructure has a
strong focus on high
performance.

Figure 6.  A time sequence, from left to right, of a vortex ring merger problem using the AMR incompressible Navier–Stokes code included as part
of the APDEC code release. There are three grid levels, with a factor of four refinement between successive levels. Middle level boxes are shown in
green, finest level boxes in blue, and a single vorticity isosurface in yellow.
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resulting methods are able to resolve the range of
length and time scales of laboratory-scale turbu-
lent flames at a computational cost by approxi-
mately three orders of magnitude smaller than that
of traditional direct numerical simulation
approaches, based on explicit methods for uni-
form-grid compressible formulations. This simu-
lation capability has been validated for a variety of
two-dimensional laminar flames in studies of vor-
tex–flame interaction and emissions from laminar
diffusion flames. The methodology has also been
used for the first three-dimensional direct numer-
ical simulation of a premixed turbulent methane
flame with detailed chemistry. More recently, sci-
entists have simulated two laboratory-scale turbu-
lent premixed flames—a rod-stabilized V-flame
(figure 7), and a piloted slot Bunsen burner (figure
8). These detailed simulations captured the meas-
ured flame morphology as it evolved in the turbu-
lent inlet flow, in terms of mean flame shape and
velocity fields, global fuel consumption, flame sur-
face density, and the shape and distribution of
wrinkles in the flame surface (“Simulating Turbu-
lent Flames,” SciDAC Review, Fall 2006, p25).

Magnetohydrodynamics
One of the central design issues for the next gener-
ation of magnetic fusion devices is the macro-
scopic stability of burning plasmas. In order to
understand this problem, it is necessary to develop
a collection of tools for fully nonlinear, time-
dependent simulations. APDEC has developed
AMR codes for ideal and non-ideal magnetohydro-
dynamics using a semi-implicit predictor–correc-
tor approach. The explicit hyperbolic solver is a
second-order Godunov method combined with an

implicit treatment of the diffusion terms. This
method has been successfully applied to a variety
of scientific problems. In pellet injection, the AMR
single-fluid resistive MHD code successfully vali-
dated, albeit qualitatively, experimentally observed
differences between high-field-side and low-field-
side pellet launches (figure 9, p30). In magnetic
reconnection, the instability of the current sheet
and the formation and ejection plasmoids at high
Lundquist numbers were observed with higher
reconnection rates than those predicted by theory.
Another scientific discovery was the suppression
of the Richtmyer–Meshkov instability in MHD,
which led to a new fundamental analytic theory to
explain this phenomenon.

Improving Performance
AMR solvers for hyperbolic conservation laws
already exhibit excellent scalability up to tens of
thousands of processors. However, current imple-
mentations of iterative solvers for elliptic PDE on
AMR grids scale only to 103 processors, due to the
smaller amount of computation that is done
between communication/synchronization steps.
For the volume-of-fluid methods, there is the addi-
tional problem that the codimension-one irregu-
lar computations actually take up a great deal of
time in the current implementation and lead to
load imbalances that are not easily predicted. To
deal with these problems, multiple rounds of per-
formance improvement are being implemented,
each consisting of the following three steps. 

First, a suite of performance benchmark prob-
lems for a given capability is chosen, in consul-
tation with the application users, and
documented. Baseline measurements of serial
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Figure 7.  On the left, a flame surface image from the simulation of a laboratory-scale V-flame.  On the right, a
comparison between the numerical and experimental flame brush, which defines the envelope that confines the
fluctuating flame.
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Turbulent combustion is a
critical process for both
energy and transportation.
The detailed properties of
turbulent chemistry
interaction play a key role
in both efficiency of the
combustion process and
emissions. 
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performance and parallel performance for these
benchmarks are made and documented. These
benchmark problems are also incorporated into
the APDEC performance regression test suite.
Next, both serial and parallel code optimizations
are made; in the process, new performance
benchmark problems may be developed and
incorporated into the performance test suite. At
the end of this process, measurements of the
optimized code are performed and documented
again. In the last step, the optimized code is
released for general use. 

It is expected that each round of such perform-
ance improvements will lead to an order-of-mag-
nitude improvement in the scalability of the
APDEC solvers. In the initial round of perform-
ance improvements, the basic bulk-synchronous
model of the parallelism and the associated APIs
will be fixed. Within that framework, APDEC will
introduce optimizations based on ideas such as

improvement in the locality of the distribution of
grids onto processors, load balancing based on
run-time measurements, and platform-depend-
ent optimization of parameter choices, such as
patch size and number of ghost cells. In later
rounds it will probably be necessary to take more
aggressive steps, such as modifying APIs to
accommodate overlap of communication and
computation, or taking advantage of specialized
hardware features.

APDEC is also collaborating with other SciDAC
Centers and Institutes (“SciDAC-2: The Next Phase
of Discovery,” SciDAC Review, Spring 2007, p16)
to provide access to tools specialized to support
the discretization approach being used by
APDEC. These include interfaces to solver pack-
ages from the SciDAC Towards Optimal Petascale
Simulations (TOPS) Center, such as the hypre pack-
age for solving linear systems, and the Sundials
package for solving ordinary differential equa-
tions (ODE) and differential algebraic equations
(DAE) based on matrix-free Newton–Krylov
methods. Additionally, visualization and data
analysis tools from the SciDAC Visualization and
Analytic Center for Enabling Technologies
(VACET) are used for block-structured, locally-
refined grids and embedded boundary discretiza-
tions of problems with complex geometries.
Furthermore, storage resource management and
high-performance input/output (I/O) libraries
from the Scientific Data Management (SDM) Cen-
ter (“From Data to Discovery,” SciDAC Review, Fall
2006, p28) are also very useful.

SciDAC Applications

Combustion
APDEC is continuing the development of combus-
tion codes for laboratory-scale flames. The prin-
cipal goals will be to couple the combustion codes
to cold-flow simulations in complex geometries,
and to begin to address the algorithmic problems
associated with performing AMR calculations of
low-Mach number reacting flows in closed con-
tainers. In the first problem, an embedded bound-
ary incompressible Navier–Stokes solver for the

Figure 8.  A flame surface from the simulation of a
laboratory-scale slot Bunsen flame. The surface is
colored by the local mean curvature.

It has long been known that, at least for simplified model
problems, fourth/sixth-order accurate discretizations
represent an optimum balance between accuracy and
algorithmic complexity. Recent research developments in
numerical methods indicate solutions to two of the major
questions that have prevented the use of such higher-

order methods for multiphysics problems—the need for
higher-order versions of finite-volume methods on locally-
refined grids, and of semi-implicit temporal discretization
methods. Similar ideas can be applied to obtain higher-
order accurate embedded boundary methods for
problems with complex geometries.

H i g h e r - O r d e r  F i n i t e - Vo l u m e  M e t h o d s  

It is expected that each
round of such performance
improvements will lead to
an order-of-magnitude
improvement in the
scalability of the APDEC
solvers.
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Solutions to Poisson’s equation satisfy a
strong form of elliptic local regularity. The local
smoothness of the solution depends only on
the local smoothness of the right-hand side
with the coupling between disjoint regions
mediated by real analytic functions with rapidly
decaying derivatives. This suggests that an
efficient parallel method for computing the
potential induced by some charge distribution
would be to compute local convolutions on a

disjoint union of patches, and then compute
the smooth global coupling among the patches
using a calculation with a much coarser, and
less computationally expensive, discretization.
While this observation has been used to
implement fast particle methods with low
communications costs, it had not been fully
exploited for gridded discretizations. Traditional
iterative methods for solving Poisson’s
equation on locally refined grids have

unacceptably high communication costs, with
communication/synchronization steps required
after each local relaxation/operator evaluation
step—that is, every few tens of floating point
operations per grid point. However, recent
developments in extending the potential-
theoretic ideas used in the fast particle
methods are leading to fast Poisson solvers
with an order-of-magnitude increase in
performance over traditional iterative methods.

L o w - C o m m u n i c a t i o n  P o i s s o n  S o l v e r s  

Figure 9.  A calculation of fuel pellet ablation in a plasma using the AMR MHD code. At the top are grids on full computational domain, and a blow-up of
the refined region in the neighborhood of the pellet. Below, a comparison of high-field-side (top row) and low-field-side (bottom row) launch strategies is
shown. The high-field-side injection exhibits greater penetration of the pellet into the center of the plasma, leading to greater fueling efficiencies.

6.00

4.67

3.35

2.02

0.70 0.70

2.02

3.35

4.67

6.00

6.00

4.67

3.35

2.02

0.70

6.00

4.67

3.35

2.02

0.70

6.00

4.67

3.35

2.02

0.70

6.00

4.67

3.35

2.02

0.70

Field Data Coloring Legend Field Data Coloring Legend Field Data Coloring Legend

Field Data Coloring Legend Field Data Coloring Legend Field Data Coloring Legend

P
. C

O
LE

LLA, LB
N

L



flow inside the nozzle will provide the inflow
boundary condition for the existing low-Mach
number combustion solver in a rectangular
domain. Coupling between the two solvers will
be one-way with no feedback from the combus-
tion solver on the cold-flow solution in the noz-
zle. The nozzle geometries will be those
developed by experimental collaborators at
LBNL, and validating the cold-flow simulations
will be done using their experimental data. To
address the issue of combustion in closed con-
tainers, APDEC researchers will implement a new
low-Mach number reacting flow simulation capa-
bility in a closed domain based on a generaliza-
tion of the allspeed projection formulation for
fully compressible flow. Such an approach will
allow users to correctly represent long-wave-
length acoustics and their impact on combustion
stability, while retaining the other advantages of
the low-Mach number models. Finally, the latter
capability will be extended to include an embed-
ded boundary representation of engineering
geometries to represent real engineering devices,
such as gas turbines.

Magnetic Fusion
Researchers are continuing the development and
extension of the AMR MHD code suite to simu-
late pellet injection and edge-localized modes
(ELM) under APDEC. The main scientific goal is
to achieve a predictive capability for the pellet
injection phenomenon in ITER—the interna-
tional fusion research project—including valida-
tion against pellet injection experiments. For the
ELM simulations, the main scientific agenda is to
simulate type I and type III ELMs and quantify the
frequency of occurrence and the heat loads. Pre-
dicting these heat loads on the diverter is of clear
practical importance for ITER. Another goal is to
quantify the role of sharp pressure gradients and
bootstrap current in the destabilization of MHD
peeling and ballooning modes. 

To support these goals, two approaches are
being pursued. Initially, an existing semi-implicit
AMR grid method is being used, while represent-
ing the vacuum region as a high-resistivity low-
temperature plasma. Later, that approach will be
extended to use a mapped grid discretization
based on magnetic flux surface coordinates. The
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Figure 10.  Image of a three-dimensional Rayleigh–Taylor unstable flame in a Type Ia supernova and the computed
kinetic energy spectrum (blue curve) exhibiting the classical k-5/3 decay (red line).
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One of the essential research developments
driving the development of APDEC’s embedded
boundary methods is the systematic use of a
formal truncation error and modified equation
analysis as a basis for discretization design.
The extension of this approach to moving and
free boundaries will provide a solid

mathematical foundation for the application of
volume-of-fluid methods to a broad range of
sharp interface problems arising in reacting
fluid flows (flame fronts), multiphase flow
(surface tension, heat/mass transfer across
phase boundaries), and conjugate heat
transfer. For moving boundaries, researchers

are also developing robust and efficient
second-order accurate level-set methods to
represent the dynamics of sharp interfaces in
fluids that can be combined with the existing
grid generation methodology to compute
sufficiently accurate finite-volume discretization
information for moving fronts.
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A P P L I E D  M A T H E M A T I C S

nonlocal electron heat flux will be modeled using
a semi-analytical model, or by tabulating the elec-
tron heat flux from separate simulations of the
Fokker–Planck equations.

APDEC scientists are also developing AMR
MHD algorithms that treat the time scales asso-
ciated with the fast magnetosonic and Alfvén
waves implicitly, both based on semi-implicit for-
mulations and using a fully implicit method
based on the Newton–Krylov approach. In the lat-
ter case, the ideas can be used as the basis for
designing preconditioners to remove the fast time
scale dynamics.

Astrophysics
In the course of developing the AMR low-Mach
number code turbulent combustion, the APDEC
combustion team found that the same technol-
ogy can be extended to treat the nuclear reaction
networks and equation-of-state packages used to
model nuclear burning in a Type Ia supernova
(“Computing the Detonation of a White Dwarf
Star,” p10). The resulting code was used to study
the microphysics of Rayleigh–Taylor unstable
flames in two and three dimensions (figure 10).
Following this work, APDEC will be collaborat-
ing with the Computational Astrophysics Con-
sortium, led by Dr. Stan Woosley of the
University of California–Santa Cruz, and the
Adaptive Algorithms for Astrophysics Science
Application Partnership (SAP), led by Dr. John
Bell of LBNL. This project relies heavily on AMR
as a simulation approach, and the SAP will sup-
port the development of new AMR capabilities
not otherwise available as open source codes.
These new capabilities will include: low-Mach
number and allspeed models for fluid dynamics

with nuclear burning, AMR for multigroup flux-
limited diffusion and other models for radiation,
and AMR Poisson solvers for self-gravity. APDEC
will work with these projects, particularly the
SAP, to provide the infrastructure support for the
development of these capabilities, particularly in
the area of high-performance solvers for elliptic
PDEs on AMR grids.

Accelerator Modeling
APDEC is developing a variety of tools for simu-
lating plasma-wakefield accelerators. The embed-
ded boundary compressible Navier–Stokes
capabilities are used to simulate the gas dynam-
ics inside of laser-irradiated capillary tubes. AMR
capabilities for several models used to simulate
the beam dynamics in a wakefield accelerator,
such as an AMR particle-in-cell (PIC; sidebar “Par-
ticle-in-Cell Methods for Electromagnetics”) algo-
rithm for the QuickPIC approach, are also being
developed.

Conclusions
The APDEC Center has been successful in provid-
ing software infrastructure for a broad range of
applications involving PDEs. A key component
of this success has been the mapping of mathe-
matical concepts as they arise in the definition of
models and algorithms to software components,
leading to substantial reuse.  APDEC is building
on this model for success so that it can continue
to develop and offer tools for enabling discovery
in the future. l

Contributor: This article was provided by APDEC Principal
Investigator, Dr. Phil Colella of LBNL
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Particle-in-cell (PIC) methods are actually a
hybrid of grid-based methods and a relatively
singular representation of the interaction of the
charged particles with the grid that take
advantage of very specific features of uniform-
grid discretizations of the fields to obtain
stable and accurate results, rendering the
extension to locally-refined grids problematic. 

The standard methods used to solve the
field equations preserve the divergence
constraints of Maxwell’s equations only on
uniform staggered grids and with specific
particle discretizations. The requirement that
these properties be preserved in the presence

of locally refined meshes severely constrains
the design choices for the discretizations.
Another well-known problem regarding wave
equations on locally refined grids is that
outgoing waves on the fine grid that are not
resolved on the next coarser level can get
trapped on the fine grids. For particle methods,
which are constantly generating such modes,
the accumulated energy in those modes
eventually overwhelms the solution, leading to
large errors. New approaches to these
problems include splitting the electric fields
and currents into solenoidal and gradient
components, and use the electrostatic PIC

algorithms described above to solve for the
gradient component. Even though this will
introduce elliptic solvers to a problem in which
they previously did not appear, it is expected
that, at least in some cases, the advantages of
adaptivity will compensate for that. To solve
the second problem, APDEC is taking
advantage of the linearity of the problem in the
development of new coarse–fine boundary
conditions. These will permit outgoing waves
on the fine grid that are not resolved on the
coarse grid to propagate into a sponge layer
surrounding the fine grid, where they will be
harmlessly damped.
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