THE TERASCALE OPTIMAL PDE SIMULATIONS PROJECT

Perfecting the

LANGUAGES
and TOOLS of science

By DoN MONROE

The Terascale Optimal PDE (Partial Differential Equations) Simulations (TOPS) project focuses on
creative algorithms and software that enable scientists to analyze natural phenomena using the
highest available computing power. In mid-November 2005, the team unveiled the TOPS Solver
Component — a single interface that provides access to a wide variety of tools.

TOPS researchers
interface with application
scientists to facilitate
scientific discovery
through high-end
computing and high-
performance simulations.

Scientific discovery involves understanding the
intricacies of nature and replicating them in con-
trolled ways: in calculations, in the laboratory, or,
increasingly, in computer simulations or “virtual
laboratories.” To exploit the growing power of
computers, however, researchers must describe
the world in terms of mathematical equations that
connect observable quantities with scientific laws.
Partial differential equations (PDEs) are a group of
such equations that can quantitatively describe
many natural phenomena (see sidebars “Different
problems, different equations,” p52, and “What is
aPDE?,” p53). Efficiently solving such equations is
a critical enabler for scientific computations.

One of the key features of the SciDAC program
is collaborative research between scientists who
specialize in particular disciplines, computa-
tional scientists, and applied mathematicians.
These scientists are using computer simulations
to analyze a host of problems that cannot be
probed by experiment and theory alone. Topics
range from the scientific challenges of physics,
chemistry, and combustion to the evolution of
the Earth’s climate and the complexities of bio-
logical and astronomical systems.

Since 2001, the SciDAC initiative has been driv-
ing the state of the art in advanced scientific com-
puting, and pushing science forward via multiple
parallel efforts. Special application projects
within the program focus on specific science

areas, in fusion energy science, high-energy and
nuclear physics, biological and environmental
research, and basic energy sciences. Examples of
this work are discussed elsewhere in this issue.
Other projects advance enabling technologies
and aim to bolster the infrastructure and tech-
niques that facilitate advanced scientific comput-
ing. Some of these projects allow users easier and
more effective access to computing resources,
while others, such as Integrated Software Infra-
structure Centers (ISICs), advance the techniques
that enable the computations.

The TOPS project

The Terascale Optimal PDE Simulations (TOPS)
project is an ISIC that specializes in the solution
of PDEs. It provides techniques and algorithms
for efficiently solving PDEs to obtain insight into
the underlying science. TOPS researchers inter-
face with application scientists to facilitate scien-
tific discovery through high-end computing and
high-performance simulations.

The prefix “tera” in “terascale” means trillion,
or 10" in the more compact scientific notation.
The scale has many meanings, since demands for
various types of resources, such as memory, com-
putational speed, and communication bandwidth
often increase together. Large-scale problems
might require 1 million Mbyte of memory, for
example, as well as 1 trillion floating point oper-
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Fig. 1. Software tools that are being developed and enhanced by the TOPS program allow machines like the ORNL Leadership Class Computers
(center, and see p38) to simulate ever more complex systems. This allows researchers to resolve a wider range of scales of many phenomena.
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THE TERASCALE OPTIMAL PDE SIMULATIONS PROJECT

Different problems, different equations

A huge variety of scientific problems can be
described by PDEs. They often go by the names
of their eminent inventors, such as Maxwell or
Navier-Stokes in the examples below.

As a rule, individual quantities follow
relatively simple rules. Electric and magnetic
fields, for instance, obey Maxwell’s equations.
One of these four PDEs relates the rate of
change of the electric field with time to the
spatial variation of the magnetic field. A
second relates the change of the magnetic
field to the variation of the electric field.
Combining the two produces the wave
equation, whose solutions include
propagating electromagnetic radiation ranging
from radio waves through light waves to
gamma rays. Because Maxwell’s equations
are linear, these different waves can all pass
through each other without interacting.

To describe the motions of a fluid that is
subjected to gravity, pressure gradients and
viscous forces, scientists use the

In mid-November 2005,
the team unveiled the
TOPS Solver Component
— a single interface that
provides access to a wide
variety of tools.

Navier-Stokes equations. In contrast to
Maxwell’s equations, the resulting fluid
motions, including complex flows like

motion strongly influence one another.

to be electrically charged fluids. To desc
them, scientists must combine the fluid
equations with Maxwell’s equations. The
resulting magnetohydrodynamic equatio

of coupled motions of the fluid and the
electromagnetic field.

simple, when several of them are combi

difference in pressure between opposite
will cause the air to flow, as will various

ations per second. The goal of the team is to use
the vast resources available efficiently.

Enormous improvements in computational
hardware have been made in recent years, but
improvements due to better algorithms have been
equally significant. On the hardware side, mass-
produced microprocessors have enabled new
computer architectures, in which tasks are shared
by hundreds of thousands of processors. These
clusters can attack much larger problems than
one processor working alone.

Unless this division of labor is arranged care-
fully, however, most processors can spend much
of their time idle as they wait for others to provide
them with data. Therefore, advances in software
and algorithms that make it possible to keep all
the available resources usefully busy have been
critical to maximizing the use of these parallel
processing possibilities (see sidebar “Software vs.
hardware,” p53). The improvements have been
particularly dramatic for the PDEs that are at the
heart of the TOPS agenda. These equations pro-
vide the mathematical link between the science
and the computation. Like the science they
describe, they are inherently complex.

The TOPS project develops and distributes
enabling technology, including sophisticated
algorithms and simulation codes. These tools
allow the use of modern high-performance com-
puters to solve the PDEs that probe science across

turbulence, cannot in general be written in a
simple mathematical form. Moreover, because
the equation is nonlinear, different types of

Stars and fusion plasmas can be considered

have solutions that show a tremendous variety

Even when the underlying equations are

resulting system can often only be solved using
computer simulation. For example, imagine a
cubic meter of air outside your window. Any

forces. Heat will flow if the temperature differs
across the cube. Molecules or particles in the
air will be heated by the sunlight, and will emit
infrared radiation. If the air cools, water may
condense, releasing more energy and forming
droplets that can scatter sunlight. If the air
moves, the cube carries its contents with it, to
be replaced by a new one with slightly different
properties. On top of all of this, chemical
reactions will change the cube’s composition.
Although there’s a lot going on inside it,
the various phenomena are well understood.
They and their interactions can be described
mathematically, at the scale of a single cube.
What is very difficult to predict, though, is how
more than 108 such cubes around the globe,
pummeled by sunlight from above and
interacting with the land and ocean below,
give rise to the complexities of hurricanes or
global climate change. To even begin to
describe these phenomena requires massive
computer simulations.

ribe
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ned the
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other

a wide range of applications. By working closely
with subject-matter experts and assessing how
the software is used, TOPS researchers are
endeavoring to make the solvers more user-
friendly for application scientists. With this in
mind, in mid-November 2005, the team unveiled
the TOPS Solver Component — a single interface
that provides access to a wide variety of tools.

Multiple scales
A central challenge in the study of large systems
is to cope with the fact that structures on many
scales interact. Natural phenomena span length
scales covering many orders of magnitude, as well
as vastly differing time scales. For example,
micrometer-sized particles in the atmosphere,
though tiny, can strongly affect the large-scale
heating of the atmosphere and its chemistry over
many kilometers of distance. And an exploding
supernova, though very large, develops structure
on a very fine scale relative to the star, both because
of tiny eddies of fluid flow and because of the shock
wave that the explosion generates (see figure 4,
p54). Tokamak fusion plasmas involve time scales
ranging from picoseconds to many minutes. Bio-
1ogical systems, too, may represent a combination
of “multi-scale” and “multi-rate” problems.

In addition to issues of size and rate, some prob-
lems researched by SciDAC are also “multi-com-
ponent” and “multi-physics.” Multi-component
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Software vs. hardware

The exponential improvements in
computational hardware over the last few
decades are well known. They are often
described in terms of Moore’s law, which
states that the number of transistors on a chip
will double every 18 months. The more densely
packed transistors are also faster and
consume less energy. Many observers,
however, believe that the era of exponential
improvement will come to an end over the next
decade or so.

Few people realize that improved software
algorithms have contributed just as
dramatically to the increases in computational
power as hardware developments. The chart in
figure 2 shows the improvement in the time
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Fig. 2. Improvements owing to new software
algorithms are represented by the yellow line.
The increase in calculation speed is shown for
a 3-D system with n=64 points on each side.
Increasing chip sizes are shown in blue.

needed to solve Poisson’s equation on an

< nxnxn cubic grid where n=64, which
requires solving a sparse matrix. The
operations required for straightforward banded
Gaussian elimination rise as n’.

Successive improvements, including a
Gauss-Seidel method, optimal successive
over-relaxation (SOR), conjugate gradient, and
multigrid methods, successively reduce this
demand to n*. Thus, for n= 64, the full
multigrid technique is able to solve this
problem 16 million times faster than the
banded Gaussian elimination. The memory
requirements are also reduced, from n® to n®.
For a larger system, the improvement would be
even more dramatic.

What is a PDE?

Much of the complexity in the world reflects the
large-scale consequences of simple, local rules.
For example, each segment of a guitar string is
pulled by the tension of neighboring sections of
string. If at a particular instant the string is
curved, the pull from each end is not in exactly
opposite directions, so a net force acts to set
the segment moving. Once in motion, the inertia
of the section tends to keep it moving, so that it
overshoots the point at which the forces
balance. As in a child’s swing, a restoring force
combined with inertia results in oscillations.

Scientists analyze such situations by using
the language of differential equations to
describe what is happening at each point. The
solution is the complete response of the
string, for example, to being plucked. For a
simple system like a guitar string, there is an
exact mathematical description of the
resulting motions. These motions can be
broken down into separate sinusoidal
oscillations with different numbers of
wavelengths along the length of the string.
Even for more complex linear systems, finding
these “eigenmodes” and their frequencies
suffices to describe their behavior.

For example, figure 3(a) shows the tension
with which neighboring sections of a guitar
string pull on a small piece of length Ax. The
curvature of the string causes a net force that
accelerates the section to reduce the
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Fig. 3. The tension on a guitar string is affected by a force that can be described using a PDE (in box).

curvature. The displacement y depends on
both position x and time t, and is governed by
a partial differential equation (PDE). This
equation is linear, because multiplying y by a
constant doesn’t change the equation.

In figure 3(b), the solutions to this simple
PDE are sinusoidal waves, the frequencies and
wavelengths of which are determined by the

tension T and density p of the string. In a guitar,
the string is held fixed at either end. Within
these boundary conditions, the string can move
in a set of simple oscillatory solutions, or
eigenmodes, corresponding to integral numbers
of wavelengths between the boundaries. All of
the possible motions of the string can be
described by adding up the eigenmodes.
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Even the most complex
set of PDEs can be
expressed as a balance
between terms
representing various
fluxes and rates that must
equal zero.
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Fig. 4. A simulation of a core-collapse supernova (see feature “Modeling the first instants of a star's death” on p26).
Simulating the details of the shock wave (the hazy blue halo) and the fine turbulent details of the flow requires a grid
spacing that is very small compared to the size of the collapsing star. In addition, to capture the asymmetrical
features of the collapse the simulation must be done in three dimensions rather than being idealized to one or two
dimensions. These details vastly increase the computational demands.

systems have different parts that overlap in space
and interact with one another, while multi-physics
problems include diverse physical phenomena,
such as electromagnetic waves and fluid flow, in
the study of a complex process.

All of these factors add to the difficulty of sim-
ulating complex systems efficiently and finding
solutions that are valid across these multiple rates,
scales, components and types of science. Success-
ful analysis techniques must include relevant sci-
ence at various levels of detail and utilize computer
power to keep track of all the interactions.

Gridding the continuous

Complex physical and biological phenomena
usually look smooth at the macroscopic level.
Although on the tiny scale of atoms the world is
built of discrete particles, on the length scales that
are relevant to, say, a fusion reactor or an evolv-
ing star, this discreteness can often be ignored.
The apparent smoothness is embodied in the
PDE:s that researchers use to describe such sys-
tems. These “continuous” equations deal with the

average properties of many particles, like pres-
sure, temperature, and charge density, and their
gradual variation in space and time.

To solve these equations using numerical
methods on computers, however, this continu-
ous world must again be broken into discrete
parts. These smaller parts are not the actual par-
ticles of nature. Rather, the researchers describe
their system on a mesh, with each unit of the
mesh representing many particles. This replaces
a single, continuous equation for the whole sys-
tem with a large number of discrete ones. For
example, in the PDE for a guitar string, the
curvature of the string at each point can be esti-
mated from the change in its slope at neighbor-
ing points (see figure 3).

Choosing the grid

Choosing the correct grid for the task is crucial
to efficiently solving large problems. The simu-
lation must be performed with a very fine grid if
internal details are to be captured accurately.
However, if the grid is made too fine, the calcu-
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Choosing the correct grid
for the task is crucial to
efficiently solving large
problems.

Making a continuous problem discrete

Solving PDE problems

numerically requires replacing KA *I/
) Ty | i P

smoothly varying quantities VR A
with a set of discrete values ] ,.: e

on a grid. The simplest grid is }\ﬁ v
a simple rectangular lattice,
for which it is easy to express 7
the derivatives that enter the N
differential equations in terms >V

of the change in values N | .

between grid points.

Such regular grids result in
inefficient calculations,
however. The points are just as
dense in regions where there
is little variation as in the
regions, for example near the
edges of this airfoil, where
finer detail is needed. The
complex geometry of the grid
makes it harder to set up the
equations, but in the end the
calculations run much faster.

lations may take much longer than necessary.
They may also be overwhelmed by the accumu-
lation of tiny errors. On the other hand, a grid
that is too coarse may blur important details,
such as sharp features in the boundaries. In addi-
tion, many models develop local structure, such
as turbulence or instabilities, that can only be
described properly by using a fine mesh that is
sensitive to these details.

Use of a fine grid dramatically increases com-
putational demands. Researchers frequently use
non-uniform grids, with a finer spacing in
regions where more detail is necessary (see side-
bar “Making a continuous problem discrete,”
above). Such grids complicate the initial formu-
lation of the problem, but the payoff is that the
computation runs faster, since time is not wasted
on unimportant regions of data.

Even the most complex set of PDEs can be
expressed as a balance between terms represent-
ing various fluxes and rates that must equal zero.
This gives mathematical expression to conserva-
tion laws for mass, momentum, energy, charge,
chemical species, or other fundamental quanti-
ties. For example, Poisson’s equation relating the
electric field E to the charge density p can be writ-
ten 9°E[ox*+ 8E[dy” + 9°E[dz*—4mp = 0. Solving it
for a particular spatial distribution of charge is
equivalent to finding values for the electric field
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Fig. 5. It is important that the correct amount of detail is used in grids for PDEs. If
the grid is made too fine, the calculations may take longer than necessary, and may
accumulate errors. Conversely, a grid that is too coarse may blur important details.

Fig. 6. A simulation of the trajectory of a packet of charge
in the toroidal volume of a tokamak for fusion applications.

at every point in space, so that this expression is
zero everywhere.

An effective method for solving many such
equations is to start by guessing a solution, and
evaluate the left side of the equation everywhere.
The deviations from zero are then used to mod-
ify the trial solution, and the process is repeated.
This iterative procedure will eventually settle on
a field distribution that satisfies the equation
everywhere to any desired level of accuracy. A
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OPTIMAL PDE SIMULATIONS PROJECT

Modern multigrid
techniques reduce the
computational effort so
that it rises only in direct
proportion to the number
of points on the finest
grid. This scalability lets
researchers tackle much
larger problems than
otherwise would have
been possible.
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e
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Fig. 7. Most of the computational effort in a simulation is expended at the finest level of detail. Unfortunately, these
expensive calculations must be repeated many times to correctly describe the variation on long-length scales.
Researchers employ multigrid techniques to pass information back and forth between coarse and fine grids. This
smoothes out noise in the simulation quickly, allowing for scalable computations for which the required resources

only grow as rapidly as the size of the problem.

The need for scalability

Modern algorithms strive for
scalability, meaning that the required
computational resources grow only
as fast as the size of the problem to
be solved. In many other situations
(and for older PDE algorithms), the
resource demands increase much
faster than the size of the problem
itself as the problem gets bigger.

For PDEs, explains TOPS project
Principal Investigator Dr David Keyes
of Columbia University, “the
motivation for scalability is that

you're trying to approach a
continuum.” If the scientists want to
explore finer details of the system,
they can distribute discrete pieces of
the calculation to different
computers, which do their work in
parallel. By contrast, in simulating
the structure of a material, for
example, once the computation
reaches the level of atoms, no further
partitioning is possible.

With more efficient simulations,
larger problems can be investigated,

with as many as tens of billions of
unknown values to be determined.
Potentially misleading simplifying
assumptions, such as using one- or
two-dimensional slices in place of a
true three-dimensional problem, can
be avoided. Also, faster calculations
make it easier to check whether the
results are sensitive to particular
assumptions or details of the model.
This sensitivity analysis can then help
the researchers to reverse the
problem and optimize the results.

similar technique can be used for systems of cou-
pled differential equations — for example, if the
charged density p responds to other quantities.
This kind of algorithm very quickly finds
approximate solutions that are valid at short-
length scales, comparable to the grid spacing.
However, errors that spread over large distances
require many iterations to be corrected, and as
they evolve, the fine-scale details must change as
well. Because it takes longer for a large grid to con-

verge to a solution, the computational demands
of this kind of algorithm grow much more rapidly
than the number of points in the grid.

The multigrid solution

A solution to this challenge, first proposed in the
mid-1970s, is a class of algorithms called multi-
grid (see figure 7, above). The idea is to solve the
problem on both fine and coarse grids, passing
information back and forth between them. The
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Tools for TOPS

TOPS researchers support a variety of tools for
solving different kinds of problems. These
“solvers” can be divided into five categories:
o Linear solvers analyze large systems of
equations in which the response is simply
proportional to the driving forces or source
terms. This method will always be valid for
looking at small perturbations of the system,
and often provides a useful starting point even
in more complex cases.

o Eigensolvers build on the linear solvers to
identify the natural modes of a complete
system. In a linear system, these modes don’t
affect one another, so researchers can
describe the complete behavior by specifying
the degree to which each one is present.

time
integrator

linear
solver

nonlinear
solver

- sensitivity

eigensolver

indicates
dependance

o Nonlinear solvers deal with the vastly more Fig. 8. The relationship between different
difficult situation that arises when the response  solvers used in the TOPS program.

coarse grid can quickly reduce the long-length-
scale errors. Indeed, since there are far fewer
points in this grid, it can be solved much more
quickly. This coarse grid solution is passed to
successively finer grids using a “prolongation”
scheme to interpolate between the coarse grid
points. The solution on the finest scale is passed
back to coarser levels, first using a smoother to
remove noise, and then a “restriction” algorithm
to reduce the number of grid points.

Researchers successively estimate solutions on
different levels, while passing information
between coarser and finer levels. They use vari-
ous rules for moving up and down the levels.
These multigrid methods are much more com-
plex than a direct solution at a single scale, but
they vastly reduce the number of times that the
problem must be solved on the finest grid, which
requires the most resources.

Modern multigrid techniques reduce the com-
putational effort required so that it rises only in
direct proportion to the number of points on the
finest grid. This scalability lets researchers tackle
much larger problems than otherwise would
have been possible (see sidebar “The need for
scalability,” p56). Researchers are also extending
the multigrid techniques to deal effectively with
complex grid geometries. Some of these exten-
sions generate coarse grids from the geometry of
the fine grid. The most advanced, “algebraic”
multigrid techniques, however, create the coarse
grid based on the numerical properties of the sci-
entific problem to be solved.

Important phenomena occur over many orders

S3A3) 'Q :308N0S

is not proportional to the driving forces or
source terms, so that excitation of one mode
spreads into others.

o Time integrators take a description of how
the system changes with time and track its
evolution over extended periods.

o Optimizers change the problem parameters
to try to obtain a specified response. This
response could be a numerical performance
goal, or it could be an indicator of the overall
agreement with an experimental result.

In addition to these five categories,
sensitivity analyzers are built into each of the
first four types of solver to indicate how much
their behavior varies in response to a change in
the inputs. This information then helps the

optimizers to determine the best way of changing
their inputs to achieve a change in output.

of magnitude in time, as well as distance. As dis-
cussed earlier, the motion of an electron in the
magnetic field of a plasma tokamak varies on a
time scale of picoseconds, while the pulse length
may extend over several minutes.

Some researchers employ a further enhance-
ment: an “adaptive” grid, the structure of which
changes depending on the computational
demands. For example, turbulent fluid flow gen-
erally introduces structure on many length scales,
including very fine ones. An adaptive grid can
introduce more points only at times and places
where fine structure appears. Such adaptive grids
are being actively investigated by, for example,
SciDAC’s Terascale Simulation Tools and Tech-
nologies (TSTT) ISIC.

Unfortunately, aggressive use of adaptive grids
sometimes poses challenges for parallel compu-
tation. For one thing, ensuring that the computa-
tional load is equally distributed between
processors requires frequent shifting of the load
as the grid changes, which can slow things down.
Since TOPS aims to investigate large problems
with very high parallelism, the researchers have
not made extensive use of grids that change dur-
ing the computation.

Types of solvers

TOPS researchers are building five types of
solvers (see sidebar “Tools for TOPS,” above). Of
these, the linear solver is the most fundamental,
designed to solve problems of the general form
Ax=b. This is “our meat and potatoes,” says Dr
David Keyes, Principal Investigator. The apparent
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A large part of the SciDAC
effort is devoted to
understanding how a
complex system will
behave under prescribed
circumstances.

What's all the fuss about Ax=5?

Much effort in scientific computing
aims to solve equations that can be
written in the form Ax=b. This
simple form belies great underlying
complexity. The quantity x, for a
start, consists of a series of values,
one at each of the N points on the
grid. For the guitar string in figure 3,
for example, the elements of x are
the vertical displacements of the
string at positions along the string.
The slope of the string at any point
is computed from the difference in
the displacement at neighboring
sites. The curvature, which
determines the restoring force on a
particular segment of string, is
determined from the change in
slope between neighboring points.
This can be expressed in terms of
the difference of the displacement

257x257x257 target model

of that segment and the average
displacement of its neighbors on
each side.

The forces on each of the N
segments are computed as a
weighted sum of the displacements
of all segments of the string. In
general, the N computations can be
written compactly as a matrix
product Ax. The N x N elements of
the matrix A each express the weight
with which a particular segment
contributes to the force on another
segment. Problems that are linear
can always be expressed as such a
weighted average.

When researchers try to solve
larger problems by increasing the
number of points in the grid, the
matrix A can become enormous. If
there are 1 million points on the grid,

Vp = 4.5 km/s isosurface

(km)

for example, A could have 1 trillion
elements. Fortunately, as in the
guitar string example, each element
is often affected by only a few
others, such as nearby points on the
grid. For this reason, researchers in
scientific computation have worked
hard to solve problems that involve
such sparse matrices.

Linear solvers are used to solve
problems of the form Ax=b, in which
b represents an external condition
(such as the plucking of the string).
Eigensolvers build on the linear
techniques to find the set of
eigenmodes that solve the related
problem Ax=2Ax. An extraordinarily
powerful feature of linear problems
is that any solution can be
expressed as a weighted sum of
such eigenmodes.
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Fig. 9. Many important problems require researchers to solve a PDE system repeatedly. In the example above,
which won the Gordon Bell prize at SC2003, the long-term goal is deducing the geological structure under the Los
Angeles basin using observations of seismic waves made during earthquakes. The researchers validated their
method by first simulating the observations that would arise from a standard model of the basin (left). They then

used optimization algorithms to reconstruct the structure from the data (right).

simplicity of this equation masks a deep complex-
ity (see sidebar “What's all the fuss about Ax=b?,”
above). Linear solvers — and their close cousins,
eigensolvers — efficiently find solutions for such
matrix problems.

Solving linear equations consumes the vast
majority of the computational resources for most
problems. In most cases the original PDEs are
nonlinear. Nonlinearity means that, unlike the

vibrations of the guitar string, different solutions
can’t be combined to get a new solution. The
complete solution of nonlinear systems is much
more complex than for linear systems.

The TOPS program has also adapted tech-
niques for solutions evolving in time.

The highest components on the chain are sen-
sitivity analysis and optimization. Sensitivity
analysis lets researchers explore the neighbor-
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hood of a single solution with nearby solutions
from nearby initial and boundary conditions and
parameters, to understand not merely a single
output, but its dependence on all of the inputs.
Optimization builds further on sensitivities and
is discussed in the next section.

TOPS researchers are also working to provide
common software interfaces so that the most
effective tools can easily be adapted to different
problems and different hardware environments.
The TOPS Solver Component is the latest devel-
opment in this aspect of their work.

Optimization problems

A large part of the SciDAC effort is devoted to
understanding how a complex but precisely
defined system will behave. Frequently, however,
this forward simulation problem is only the
beginning. Researchers are often seeking control
parameters, boundary conditions, or design val-
ues to produce a desired outcome. This outcome
might be the best possible match to measured
data, or the best performance of a new design.
Improving the efficiency of the forward simula-
tion makes this faster, but the inverse problem
needs to be explicitly addressed.

Say, for example, that astrophysicists have
observed the time course of neutrino flux from a
supernova, and would like to know what kind of
star collapsed to give such a signature. The most
direct approach would be to run repeated “for-
ward” problems, tweaking the parameters each
time to improve the match between the simula-
tion results and the experiment. More sophisti-
cated optimization algorithms automatically
search the parameter space to find the optimum
match in a relatively small number of iterations.
Despite the efficiency of these optimizers, inverse
problems tend to be much more computationally
intensive than the corresponding forward prob-
lem. In fact, says Dr Omar Ghattas of the Univer-
sity of Texas at Austin, “Optimization of terascale
problems is often a petascale problem [1000
times more demanding].”

Even if a configuration is found that produces
predictions that match the desired result,
researchers need to know how unique that con-
figuration is. Indeed, for the most challenging
problems like supernovae, researchers have
barely begun to address such inverse problems,
since the original problem is so difficult.

In more modest cases, however, TOPS
researchers are applying terascale computations
to inverse problems, together with colleagues in
the TSTT project and elsewhere. To make this eas-
ier, they insert “hooks” into the original code to
let them monitor how sensitive the end results are
to changes in the initial parameters. They do this
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Fig. 10. Researchers from across the US are contributing to the TOPS research program.

by including an additional, spatially varying field
to the simulation. Although this increases the
time needed to perform the initial computation,
they can use this adjoint field to calculate the
derivatives immediately. In this way they can bet-
ter assess how to change the parameters to make
the results approach those desired.

To compute the overall sensitivity to changes,
the researchers need to know the adjoint field at
each grid point. For less complex cases, this can
be written as a simple mathematical expression,
and can be found by mathematical differentiation.
In many cases, however, the sensitivity cannot be
expressed analytically. TOPS researchers have
developed automatic differentiation techniques
that remove the mathematical burden of calculat-
ing a derivative.

One important class of inverse problem is the
determination of the underlying structure that
might give rise to signals observed. One such
study, funded by the National Science Founda-
tion and the Department of Energy, was
awarded the 2003 Gordon Bell prize (see figure
9, p58). Based on seismic data, researchers
sought to deduce the geological structure under
the Los Angeles basin. As an initial validation of
the technique, they used the Southern Califor-
nia community velocity model for the seismic
properties of the basin, and simulated the seis-
mic waves expected in response to earthquakes.
As shown in figure 9, they were able to recover
a slightly blurred version of the original struc-
ture. Later they expect to use actual data from
a variety of earthquakes to determine the struc-

“Optimization of terascale

problems is often a
petascale problem.”

DR OMAR GHATTAS
University of Texas at Austin

ScIDAC REVIEW SPRING 2006

59

J0¥NOW "@ :30¥N0S



THE TERASCALE OPTIMAL PDE SIMULATIONS PROJECT

“SciDAC’s number-one
product is communication.
TOPS strives to understand
the algorithmic needs of
physicists and to serve as
a point of contact for them
for solvers within the
applied mathematics and
computer science
community.”

DR DAvID KEYES
Principal Investigator
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Fig. 11. To design the next generation of particle accelerators, physicists will rely more than ever on advanced
simulation tools that not only let them evaluate a proposed design, but make it easy to optimize the design for
better performance. Fig. 11(a). The detailed design of the end cell of an early proposal for the new International
Linear Collider includes many dimensions that can affect its performance. Fig. 11(b). When researchers change
the geometry of the cell, they must create a new grid on which to perform the simulation. This grid differs only at
the boundaries. Fig. 11(c). The forward simulation shows the magnetic field in the operating accelerator. To
optimize the choice of the various dimensions, this simulation must be repeated for each new option, but the
decision can be made easier by anticipating this need in the original simulation. (See article on p12.)

ture of the basin. Similar problems arise in med-
ical and other imaging techniques.

Another important example of an inverse prob-
lem is the optimization of apparatus design. This
isillustrated by an early proposal for the next-gen-
eration International Linear Collider (ILC) done in
collaboration with the Advanced Computations
Department at the Stanford Linear Accelerator
Center and members of the TSTT project. In this
case, rather than trying to match the simulation
results to an experiment, the researchers are try-
ing to maximize a measure of the magnetic field
within the cavity of the accelerating structure,
while keeping the resonant frequency of the cav-
ity tuned to the value that drives the electrons
most efficiently. The externally-controlled param-
eters that can be modified include parameters
describing the shape of the cavity (see figure 11).

Like the seismic problem, solving this design
problem is made much easier by including sensi-
tivity analysis in the original solver. However, in
design problems, the effect of the parameters on
the output can be much more indirect, making the
details of the solution rather different. In addition,
changing the dimensions of the cavity requires that
the grid be altered as the parameters are changed.
So far, the researchers have explored small changes
in the dimensions of the cavity, which can be

accommodated by changing the dimensions of
cells on the periphery of the simulation (see figure
11(b)). Larger changes that would require complete
regridding are an area for ongoing research.

Outreach

A major goal of the TOPS program is to help
users to identify the best tools for the job.
“SciDAC’s number-one product is communica-
tion,” says Dr Keyes, adding that the task of TOPS
is not primarily to develop new algorithms, but
to make it easy for users to adopt the best proce-
dures known. Otherwise, even if users know, for
example, that multigrid is the most efficient tech-
nique, the programming complexity may deter
them from using it. Users vary significantly in
their computational sophistication, so ideally a
tool will be easy for new users to get started with,
but will allow more advanced users to employ it
in a more sophisticated way.

Dr Keyes describes the three ideal stages of
collaboration between TOPS tools and their sci-
entific users as follows. In the first stage, users
adopt the basic linear tools. Although these
tools can only digest linear problems, the scien-
tists have generally spent large amounts of effort
casting their problems into a linear form. Such
linear calculations typically consume 90% of the
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I EEEEEE——— An impOI’tant future

Our favorite things

TOPS project leader Dr David Keyes adapted the
Rodgers and Hammerstein song “My Favorite Things”
to include many of the issues the team faces.

F-cycle multigrid, Krylov subspaces,

Saddlepoint solvers, reduced-order bases,
Cache-friendly, optimized “node code” that sings —
These are a few of our favorite things.

High-order schemes with flux-surface alignment,
Low-order schemes with adaptive refinement,
Users leave happy, whatever they bring —
These are a few of our favorite things.

When the code hangs,
When the queue’s full,
When support is sad,

We simply remember our favorite things...
...and then we don’t feel so bad!

Unstructured meshes and multi-rate physics,
PETSc" and Hypre' on farms running Linux,
Massively parallel flow modeling —

These are a few of our favorite things.

Multiple disciplines working together,
Tracking neutrinos, predicting the weather,
Probing stability of plasma rings —

These are a few of our favorite things.

When AG* drops,

When the plane’s late,

When meetings drive us mad,

We simply remember our favorite things...
...and then we don't feel so bad!

* PETSc: the Portable, Extensible Toolkit for Scientific Computing, pronounced PET-see.

T Hypre: the High-Performance Preconditioner Library
1 AG: the Access Grid, an Internet-enabled collaboration medium

computational budget, so using more efficient
algorithms has a big impact.

In a second stage of collaboration, the com-
puter scientists work with the scientists to recast
the nonlinear problems. “We can use their exist-
ing solver as a preconditioner,” Dr Keyes says. The
preconditioner doesn’t solve the problem, but
modifies elements of the matrix so that the
solver’s job is easier. The efficient nonlinear tools
developed in the TOPS program can then have an
even greater impact.

Finally, the two groups of researchers can work
to improve the discretization of the fundamental
problem. In these latter stages, close collaboration
between the researchers who know the science
and those who know the algorithms is essential.

Looking to the future
Modern supercomputer platforms consist of clus-
ters of powerful machines, each having only a
small part of the data stored locally. This distrib-
uted memory strongly constrains the sorts of
algorithms that can efficiently run on these clus-
ters. Fortunately for TOPS, this preferred archi-
tecture has been rather stable since the program
began, allowing researchers to concentrate on
using the machines effectively.

Some aspects of this platform could be chang-
ing soon, however. In particular, computer scien-
tists are exploring the use of “vector” machines,

which perform many similar operations simulta-
neously. Even if no such paradigm shift occurs,
the researchers will be working hard to tune their
code for steadily improving hardware.

TOPS researchers also work closely with
researchers exploring applications. As they enter
new fields, they may need to develop new types
of algorithms. An important future direction is
in climate-change research. Huge amounts of
effort have gone into the existing codes for cli-
mate, taking advantage of the very short vertical
dimension of the atmosphere and oceans relative
to their horizontal extent. So far, the researchers
have a huge investment in specialized codes, so
adapting the general-purpose codes that TOPS
specializes in would not be of immediate benefit
to them. But as ever more detailed simulations —
and greater confidence — are required, Dr Keyes
believes that collaboration on this important sub-
ject is almost inevitable. .

Further reading

The TOPS project www-unix.mes.anl.gov/scidac-tops.

V. Akcelik, G. Biros, O. Ghattas, D. Keyes, K. Ko, L. Q. Lee, and
E. Ng 2005 Adjoint methods for electromagnetic shape
optimization of the low-loss cavity for the International Linear
Collider J. Phys.: Conf. Ser. 16 435-445,

V. Akcelik, G. Biros, O. Ghattas, J. Hill, D. Keyes, and B. van
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direction is in climate-
change research.
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