rd
OSF 3 Workshop on HPC Best Practices
Track 2: Software Stages
Breakout: Integration

Attendees:

Jon Sterling, SNL

Jeff Broughton, LBNL

Krystyne Supplee, Cray

Alain Roy, University of Wisconsin-Madison
Nathan DeBardelben, LANL

Brett Bode, NCSA/University of Illinois

Pam Hamilton, LLNL

Vicky White, ORNL

Findings and Needs
*People and relationship issues are at least as important as technical challenges.
*We need tools to track and deal with software version dependencies:

* Users get bitten by new versions of tools that break their software.

* Sometimes the systems team drags along old versions of the
tools just to support these users.

* Sometimes the users drag their own versions of the older tool
into their project, making support even more difficult.

* Applications are sometimes purchased by a vendor who then makes
them proprietary, supported only on the vendor's system.

* Users sometimes react to this by writing all their own tools to
avoid being bitten again.

* We need to be able to build software in a way that can be replicated.
* Different applications may need different features in this tool:

* Keep track of version dependencies.

* Keep track of the conditions under which a fault occurred.

* Help you pinpoint what changed when a fault occurred -
operating system, library, compiler?

* Allow you to accommodate different versions of
compilers/libraries on the same system.

e Possible tools:

* (learCase might be the “Big Bomb” approach; it tracks
everything but is very expensive.

* Metronome, a tool used by the Open Science Grid, allows you to
build/create a specification of which machines and which
versions you need of each library. The specification is then
checked into a repository.

* Eclipse remote development - Eclipse is an open source
community, whose projects are focused on building an open
development platform comprised of extensible frameworks,
tools and runtimes for building, deploying and managing
software across the lifecycle.

*We need tools for testing

¢ Although it is not necessary that all sites use the same tools or tests,
all tools should be available and shared with all sites.

* Having different test approaches at different sites is beneficial and
allows more problems to be uncovered than if each site used the same
methodologies.

* Some tool ideas:
* (Gazebo runs tests with parameters you specify.
*Managing multi party open source community development is a challenge
* Making it quality is harder.
* Getting it into distros in a repeatable way is even harder.
* We are doing okay on issue tracking.

* Sites use a variety of tools: TRAC, RT, Bugzilla, Remedy,Frontrange.
All are effective.

* What about the vendor's tracking system?

* Vendors (at least Cray) allow customers to see their own bugs
and public bugs in the vendor's tracking database.

Best Practices
*Hold users’ hands.
* Different ways of doing this work better for different sites:

* Let friendly users on early to port their codes, test, and find the
bugs.

* Don't charge the early friendly users.

* Put new features on the most popular machines first for an
evening or weekend. Users will often choose to brave the new
environment as a tradeoff for being able to run on the popular
machine.

* Have separate test/development systems for users to try their
codes out.

* Develop canary applications which trip frequent buggy areas.

* Have an entire user applications team whose purpose is to
teach users how to make the best use of the machines and to
help them port their codes.

* Assign a support person to meet regularly with each user
group as a cross-XXXX member of their team. Have the
support person try out the user group's code and get it to
compile on the new system.

* Hold workshops for training users and helping them port their
codes.

* Without the hand holding, users tend to try it once, hit a snag,
and walk away.

* Hold face to face meetings of the different teams necessary to field the
system: OS support, networking, security, applications support, user
assistance:

Do it early in the project.

Use the meeting to:
* Establish working relationships.
¢ Set mutually agreed upon goals and expectations.
* Build the team.

Even if time and geography dictate that subsequent communication
be by phone and email, the early face to face meeting will lay the
groundwork to make those later communications more effective.

Continue regular weekly meetings, even if they can't be face to face.

*Nurture vendor partnerships:

It is hard to overestimate the importance of this step.

HPC systems are too large to set up at the vendor site for testing, and
the large scale integration most often must happen at the customer
site.

Give the vendor time and flexibility to do the setup and early testing at
the site.

Arrange to have vendor personnel temporarily or permanently
assigned to your site.

Give the vendor representative code which he can test at his site.
Even if his test site is smaller than yours, many bugs can be flushed
out early this way.

*Assign a staff person to complex, early, and/or immature software:

Such software can't just be plugged into your system all ready to go.

Getting troubleshooting help from the developers, who may not have
an environment anything like yours, may not be easy or possible.

At a minimum, your staff person should follow the development
process for the software.

If appropriate, allow the staff person to join the development process
and do the integration of the product at your site.

