
L e a d e r s : B i l l A l l c o c k
 A l a i n R o y

Systems Management
Breakout Conclusions

HPC Center Software Lifecycles 28-Sep-2009

System management includes:

  Jobs

 (SLURM, Cobalt, PBS, Torque, Condor…)

  Node health and testing

 (INCA, RSV, NAGIOS, CACTI, Cerebro, Zenoss…)

  Change control

 (CFengine, BCFG2, Puppet, RPM…)

HPC Center Software Lifecycles 28-Sep-2009

Jobs

  Schedulers in use: Cobalt, Torque/MOAB, SLURM/
MOAB, PBS Pro, LSF, Condor, SGE

  Best Practice: Use the same tools (like Torque/
MOAB) across an entire site. Allow policies to differ
between resource. Users and administrations benefit
from the consistency.

  Best Practice: Provide well-defined, well-considered,
openly published APIs to your software so that
behavior can be modified at sites.

28-Sep-2009 HPC Center Software Lifecycles

Jobs

  Challenge: It’s important to get good performance in
job launching. Open-source software mixed with
proprietary hardware makes this harder, unless you
have the right interfaces.

  New technology: How do we deal with a scientific
workflow that needs to access computation, storage,
network, etc?

  Challenge: Resiliency to failures gets more complex
when we consider complete (long-running!)
scientific workflows and increasing scale of systems.

28-Sep-2009 HPC Center Software Lifecycles

Node Health and Monitoring

  Challenge: There is greater diversity in monitoring
software than scheduler software.

  Challenge: It’s hard to bring data together and correlate
it across your systems

  Best practice: target your resources towards data
management (federation), not data collection.
  Separate data from data collection
  We have (and will always have) wide variety of data collection

systems, we need something common for data management/data
formats.

28-Sep-2009 HPC Center Software Lifecycles

Node Health and Monitoring (2)

  Challenge: A barrier to big improvements is that we
have something that works for today and
incremental improvements seem easier.

  Challenge: Knowing what to watch, getting the right
information, bringing it together in an actionable
way.

  Best practice: Maintain a historical database of
failures, replacements, and maintenance, and
periodically validate outages.

28-Sep-2009 HPC Center Software Lifecycles

Change Management

  Tools in use: BCFG2, Cfengine, Puppet, OneSIS. (Fewer tools than
monitoring: similar number of tools to scheduling. These are all open
source tools, though some systems ship with proprietary tools.)

  Best practice: Makes changes in one known spot, then pushed out once it is
right. Or a three-step process: test and development, qualification, then
production.

  Best practice: Have a test and development system.
  Best practice: verify that changes happened, and monitor it occasionally.
  Best practice: Don't change during off-hours. Example: Tuesday-Thursday

are good days, during business hours, not Friday-Monday.
  Best practice: have a well-defined process for deciding what changes should

be made to the system, and when they should be made.
  Best practice: keep configuration in source-code repository (Subversion,

etc) and treat it like software development. And keep it backed up.

28-Sep-2009 HPC Center Software Lifecycles

Cross-Cutting

  Communities
  (Best practice?) We need a community so we can agree on

what our problems are and what we’re trying to accomplish, so
we can decrease the diversity of systems. If we speak with one
voice, we have more clout in the vendor (or open source)
community.

  Support model
  Challenge: There is a trade-off between commercialization (get

someone else to do it cheaper) and open-source (so we can do
research and fix problems). Other models:
 Task order: pay company to implement it

 Convince vendor it will be useful to them in the future

28-Sep-2009 HPC Center Software Lifecycles

Cross-Cutting (2)

  Challenge: We need to manage diversity of our products.
  Sometimes there are too many overlapping tools, sometimes not

enough diversity.

  There is a tension between varied needs and shared experience and
increased efficiency.

  Suggestion: We should periodically review the state of
the union of our products. We need a forum in which to
do this.
  Some product areas (jobs) are more mature, and might focus on

reducing diversity.

  Some product areas (monitoring) are less mature, and may be more
exploratory.

28-Sep-2009 HPC Center Software Lifecycles

