HPC Tools Breakout Group (Day 1)

Participants

Nathan Debardeleben Dong Ahn

Craig Tull Viraj Paropkari
Tammy Welcome Andrew Hanushevsky
David Montoya Chris Atwood

Charles Bacon Chicken

Jim Brandt Fish

Cross-cutting questions

* What are the best practices and tools? Inside and Outside HPC.
* What the top challenges?
* What new technologies are needed?

Tech challenges and/or Tech development needed

Scalability : massive concurrency brings massive challenges. Tool overhead may
scale intractable on 10K-100K tasks. Early access to systems is a perennial challenge
for tool developers.

Programming model complexity: hybrid/hetero architectures, multiple
languages, multiple parallel models present a combinatorial challenge for both tool
developer and tool user.

Ease of use: tools are not inherently interesting most users. The tool community
must get past trying to convince users that tools are interesting. Identifying user
needs and providing solutions to their problems is key. Hard to use tools will hardly
be used.

Data volumes: Moving from GB to TB crushes the performance of tools designed for
MB.

Scope

Q: What are HPC tools? What are their goals?

A: Tools are programs used to develop, deploy, run and understand HPC
application codes, workflows and datasets.

Importance Urgency

1 Important Urgent

2 Needed Some Urgency

\ 3 Want \ Currently adequate

HPC Tools Taxonomy

(importance, urgency, comments about the tools)

Develop

* Compilers :Turn source code into executables (1,2-3, support for hybrid
architectures) [PGI, Intel, Cray,gcc,IBM,UPC]

* Configure/build tools and code generators (2,2, cross compilation)
[autotools,make,cmake]

e Static analysis and document generation tools (3,3, OSS solutions exist)
[doxygen]

* Debugging: Find/reveal errors in programs (1,1, scalability, code and
programming model complexity, ease of use)
[totalview,DDT,gdb,hpctoolkit,dbx,stat]

Deploy
* Issue/bug tracking (1,3, OSS solutions exist) [trac,jira,roundup,gforge]
* Code coverage/unit/build test tools (2,2,social as well as technical challenge,
ease of use)
* Performance engineering/debug (1, 1, scalability, overhead, ease of use,
programming model complexity) [TAU,OpenSpeedshop,hpctoolkit,gprof]

Run
* Workflow and task management (3, 1, move away from duct tape solutions, a
lot of room for improvement)
* WAN/Storage Data movement (1, 2, data volumes exploding, users want
filesystem like experience)

Understand
* Visualization and Analytics (1, 2, existing tools need better scalability)
* Application Performance Profiling (HPM, MPI, I/0) (1,2, need greater
deployment, ease of use, low overhead at scale) [NWperf,IPM]
* Progress Monitoring (2,2,research needed to recognize problems)
[mojo,iowatchdog]

Proposed Best Practice #1: Develop robust, portable, focused libraries and APIs to
underpin tool development. This is the lesson of PAPI, avoid having each team of
tool developers implement the bridge between low level architecture details and
high level user questions. Advocate that vendors provide well thought out, user
focused, reliable streams of collecting information from their hardware.

Proposed Best Practice #2: HPC software at every level should make clear what
information and services it provides to software at higher, lower, and adjacent
levels. Discovery of sources of profiling data, resource utilization, and status through
systematic planned mechanisms is strongly preferred to silent sources of
unpublished information. This is a benefit to both tool developers and overall
resiliency.

Proposed Finding #1: A convergence between application and system monitoring of
performance is increasingly obvious. As concurrency increases the likelihood of
delivering a million identically performing cores to an application decreases unless
a connection is made between individual node health, system-wide resource usage,
and application performance.

Prosposed Finding #2: The HPC community should develop an online catalog of
software in the HPC community (using OpenID? and a wiki/CDE). This clearing-
house would take in information about HPC tools, libraries, and system software.
Registered users could contribute information about the HPC software ecosystem,
tracking details such as versions in use, software taxonomy with dependencies,
news/discussions, links to project pages, links to software funding opportunities for
both researchers and vendors. A more aggressive approach would connect this HPC
catalog to svn/cvs repos and deliver nightly/weekly build test data.

Questions to address in the workshop notes:

How do people use tools? Who uses HPC tools?
* HPC center staff or users (sometimes vendors)
How do we track tool use? (David S.)

* Wrap the modules environment to count invocations of a tool
* Systematic process accounting reviews, integrated with batch data

[s user education about tools really an issue? Marketing models for HPC tools? How
to market HPC tools outside HPC? (David M. David S.)

User Education / Marketing models: Tools are overlooked sometimes from users because of a couple of factors; 1- not aware of functionality that would be beneficial to them, 2- tools are not easy to use -
alearning curve that individuals are not willing to invest in, 3- tools are not implemented in ways that could be beneficial to users. To move this area forward would require tool developers/supports to
be more involved with their user/potential user communities and modify tool capabilities to match and also to have a solid support/documentation environment to make deployment easier.

How to tools get developed? (Craig T.)

Are there DOE practices (IP constraints, security, etc.) that impede tool
development? How do they vary between HPC centers? (Nathan D.)

Which tools can vendors not supply? (David S. Charles B.)

How do tools get maintained? (Craig T.)
How do you do build/test? (autobuild, VMs, trac etc.) (question for SW catalog)

How are tool releases managed? Who does releases and how often? (Chris A)

The funding organization of the tool development team forms a Change Control Board (CCB) with designated chair, and key stakeholders from 1) development, 2) quality control, and 3) targeted user
community. The CCB is the key mechanism to communicate and enforce the linkage between the requirements holders and the development process.

Prior to each release cycle, a concept proposal is presented to the CCB, with traceability back to the requirements of the tool, the threshold capabilities addressed with the proposed release, the quality
measures that would be met with the release, the proposed schedule, and the risks with recommendation mitigation plan. The CCB will vote go or no-go at this stage to proceed to development.

Prior to release of the software, the CCB will again meet to assess whether the threshold measures of the release have been met, which may include beta usage feedback, bug status, platforms supported,
software dependences, training, and user support plans. The CCB will vote go or no-go at this stage to proceed to release. The frequency of the releases may range from weeks to months, depending on

the category of tools and the needs of the targetted user community.

Periodically, the funding organization and stakeholders may decide to assess progress towards success measures, for example usage of the tools by targetted programs. Furthermore, these measures may
be Specific, Measurable, Achievable, Relevant, Time-Bounded (SMART).

How can tools be made more modular? (less repetition) (David S. David M.)

This is an effort that would need the larger community buy-in. A
standard approach to interfaces would support classes of tools that
could be interchanged. Flexible frameworks that integrate tools and
make it easier to take advantage of specific tool capabilities in a
more scalable structure would allow tool makers to focus on specific
capabilities.

What libraries provide value to the tools community? What do HPC tools depend
on?

* PAPI and PAPI-C (need energy and thermal components)

* Dynlnst / Stackwalker API

¢ MRNet
e LaunchMon
e PMPI

¢ Libmonitor

How do we express software dependencies? What are techniques to decrease
entropy in software deployment? RPMs, bulletproof installs, etc. How to expand the
adoption of build/test/release processes (Chris A. and David S.)

How can we test tools in-vivo at HPC centers to find breakage before users do?
(David S. and Dave M., Dong A.)

Need to develop regression test systems that can be shared amongst hpc
centers. In cases where development is going on it would be to test
the builds - if we need to test across platform configurations - then
this needs to be done across organizations. Partnerships needed for
this as well as collaboration to build and support the tests.

Are there sufficiently general approaches to the above that could be described as
best practices? (All)

How do HPC centers collaborate (COE, distributed, distributed COEs?) in specific
tool areas? Identifying organizational core competencies? Add collaborations to
software catalog (Tammy W. and Dave M.)

There needs to be a need, a core set of individuals that want to make
it work and the environment to collaborate and share. That being said
- we have identified during these workshops (tools as well as others).
In the case of the tools catalog - this could provide a forum for
sharing information, plans, papers, approaches, etc.. in regard to a
tool or tool category. There still needs to be a driver for these
communities to work. A collaboration is only as good as the value that
people get from it - if there is no value it won't be used.

Alignment of HPC center tools requirements to leverage and guide vendor efforts?
(Dong A))

