
LA-UR-11-05005
Approved for Public release
Distribution is unlimited.

 1

U.S. Department of Energy Best Practices Workshop on
File Systems & Archives

San Francisco, CA
September 26-27, 2011

Position Paper

M’hamed Jebbanema
Los Alamos National Labs

mjebb@lanl.gov

ABSTRACT / SUMMARY
This paper will discuss a strategic and automated scripted
solution to ensure High Performance Storage System
(HPSS) metadata integrity, availability and recoverability in
the event of a disaster.

INTRODUCTION
An essential component of High Performance Storage
System (HPSS) is the metadata and tools to manage and
retrieve the metadata. Metadata can be described as the
DNA of the storage system as metadata defines the
elements of the transactional data and how they work
together. Any loss of metadata proves to be disastrous to
data integrity.

In addition to implementation of resilient and fault
tolerance hardware and software best practices, we must
guarantee the high availability and recoverability of
metadata.

Since HPSS uses IBM DB2 as its metadata management
system, manual and conventional DB2 standard backups
and lack of logs archival monitoring tools dramatically
increase administrator workload and probability of data
loss.

A Perl language based comprehensive DB2RS (DB2
Recovery Solution) delivers a robust, configurable, and
customizable recovery management with minimal efforts.

The Scheduler, Backup, Verifier and Checker(s) services
work intrinsically in a holistic approach by using SQLite
database as a central repository for all DB2RS activities.

This presentation will cover the design, and integration of
DB2RS to ensure metadata integrity and recoverability
when disaster occurs.

Paper Content
In order to achieve transaction integrity and zero or little
data loss , DB2RS makes automated scheduled local

backups including logs to different media combined with
an-offsite hosting similar backups in which to restore from
in the event of a disaster.

Goal:

 Develop a metadata backup/recovery solution that is
simple, customizable, robust, and easy to maintain.

Objective:

 Provides recoverable copy of databases.
 Metadata can be recovered to any Point In Time
 (PIT).
 Guarantees transactional consistency.
Purpose:

 Develop scripts that would leverage DB2 integrated
 utilities and tools to automate all functions ensuring
 metadata recoverability.

1.Design
 1.1 Logging
Proper DB2 log file configuration and management is an
important key to data stewardship and operational
availability.

All database changes (inserts, updates, or deletes) are
recorded in the DB2 transaction logs. Transaction logs are
primarily used for crash recovery and to restore a system
after a failure.

DB2 does have the ability to perform dual logging on
different volumes as well as different media thereby
increasing redundancy for both active logs and archive logs.

We Configure DB2 log sets by implementing
MIRRORLOGPATH and dual log archives where each
active & archive log set on independent LUN that uses
separate physical disks and different type media (TSM)
(Figure 1&2).

LA-UR-11-05005
Approved for Public release
Distribution is unlimited.

2

 Figure 1. Logging Scheme

 1.2 Backup service
The scope of this design goes beyond the process of
backing up objects to disks or tape but rather encompasses
several functions that ensure the validity and integrity of the
backups.

 Figure 3: Overview of DB2RS

Perl Language was an evident choice to automate these
tasks in order to take advantage of our locally developed
Perl modules and for backward compatibility reasons.

Scripts were structured based on type of service or function
and SQLite database (Example 1), an open source, self-
contained, embeddable, zero-configuration was chosen as a
central repository for all services activities.

Four types of services (Figure 3) were automated and can
be run either via cron (Example 2) or manually.

Scheduler : Schedules backup in SQLite database.
Backup : Checks SQLite for scheduled backups and
perform backup service.
Verifier : Validate the integrity of backups.
Checker & High Level Checker : perform diagnostics,
sanity checks, monitoring and error reporting

Each service has multiple parameters entries in
configuration (Example 3) file subject to customization
based on disaster recovery requirements.

To prevent invalid data and allow synchronization among
all services, applications state and locks were included in
the initial design.

LA-UR-11-05005
Approved for Public release
Distribution is unlimited.

 3

All services activities are captured in a centralized log and a
man page was integrated into the code for quick reference.
(Example 4)
Other useful utilities were coded and added to the mix to
ensure completeness and automation of DB2RS.

Example 1: SQLite database service activities
20110816000601 CFG TSM FULL 1
20110816041003 Verified
20110817000306 SUBSYS1 TSM INCREMENTAL 1
20110817051002 Verified
20110817000609 CFG TSM FULL 1
20110817045902 Verified
20110818000301 SUBSYS1 DISK FULL 1
20110818045903 Verified
20110818000606 CFG DISK FULL 1
20110818041032 Verified
20110819000301 SUBSYS1 DISK INCREMENTAL 1
20110819045902 Verified

Example 2: Services scheduled via cron

 06 0 * * 1,2,3 schedulme -cron -db cfg -tsm -full -sessions 1
 10,59 4,5 * * * bkp -cron > /dev/null 2>&1
 02 6,7 * * * bkpv -cron > /dev/null 2>&1
 0,41 * * * * bkplogtrim -cron > /dev/null 2>&1
09 12 * * 4 checker -cron > /dev/null 2>&1
09 12 * * 1-3,5 checkerhl -cron -disk > /dev/null 2>&1
23 * * * * ensure_archlogs -cron > /dev/null 2>&1

Example 3: DB2RS configuration file
[timemachine]
bkp: should we make another bkp if one full bkp already exists
within bkpDiffHrs (integer hrs);
bkpDiffHrs = 20
#bkpv: looks back in SQLite for unverified bkp images earlier
than diffWkBkpv; 24hrs
diffWkBkpv = 86400
#checkerhl & checker: each service must have run successfully in
the last (n) days; 3 day
ChkDysServSuc = 259200
#chekerhl: calculate timestamp before which combo bkps and logs
should exists; 1wk
ChkhlWks = 604800
checker: all services Service must have run within; 8 hrs
ChkHrsSerbkp = 64800
ChkHrsSerbkpv = 28800
ChkHrsSersched = 28800
#checker: check bkp service progress run..(avoid runaway and
hangs)..service must not be running
for more than ChkHrsRunbkp; 2 hrs
ChkHrsRunbkp = 7200
checker: if no bkp within ChkHrsBkpSched after being
scheduled; 20 hrs

ChkHrsBkpSched = 64800
checker: stats Failover paths for existence of logs (any files)
within the last ChkHrsFailover; 1 hr
ChkHrsFailover = 3600
ChkHrsFailover = 0 # test only; make sure checks paths
immediately..no delays
checker: row created in Sqlite for each db combo int he last
ChkWksSqlite; 1wk

#ChkWksSqlite = 604800
ChkWksSqlite = 3600

[constantvars]
DB2DIR = /opt/ibm/db2/path
[db2]
databases = cfg, etc
[db2:cfg]
images = /usr/db2/image/path
archlogs = //path/path/etc..
failarchlogs = /usr/db2/path/path/etc….
imagespct = 60
archlogspct = 60
tsmstartdate = 20110202

Example 4: Man page
ENSURE_ARCHLOGS(1) User Contributed Perl
Documentation ENSURE_ARCHLOGS(1)
NAME
 ensure_archlogs - Ensure that database has truncated
 logs recently
SYNOPSIS
 ensure_archlogs <options>
 Within root's or instance owner crontab...
 01 * * * * /lanl/hpss/path/db2rs/ensure_archlogs -cron
 On the command line as root or instance owner...
 # ensure_archlogs -force Force a log archive right
 now
 # ensure_archlogs -force=2h Archive if not performed
 in last 2 hours.
 # ensure_archlogs Same, but use default intervals from
 the dbconfig
 # ensure_archlogs -disable=1h Disable scripts in cron
 for 1 hour
 # ensure_archlogs -enable Re-enable scripts in cron
 # ensure_archlogs -help Show the synopsis for this
 script
 # ensure_archlogs -man Show the man page for this
 script
DESCRIPTION
 This should generally be run via cron. It makes sure
that DB2 has archived a log within a certain amount of time
for each HPSS database. If it hasn’t it tells it to do that with
the "db2 archive log" command. This limits the exposure of

LA-UR-11-05005
Approved for Public release
Distribution is unlimited.

4

Un-archived logs to a certain period of time while also
allowing minimum impact on DB2. This should probably not
run more frequently than one hour.

1.3 Checker(s) and error reporting service
Applies to Logs and backups.
 1.3.1 Checker (Example 5)
 1.3.1.1 Logs Checks:
 Performs the following tasks:
 Exclusive analysis utilizing log data mining list of
 events.
 Disk & TSM logging failures detection.
 FailArchive path check.
 Immediate reporting and notifications to SSM.

 1.3.1.2 Backup Checks:
 Performs the following tasks:
 Sanity Checks
 Diagnostic Checks

 Immediate reporting and notifications to SSM.

Example 5 : Check output
info: No scheduled backup found at this time!
info: checker: No DB2 Logs in Failover paths...good thing
info: checker: Found all 4 scheduled combination backups in
Sqlite database..schedulme is working fine
info: checker: Last successfull bkp run at 20110817055901
info: checker: Last successfull bkpv Run at
20110817071029
info: checker: Last successfull schedulme run at
20110817000609
info: checker: bkp service has run within defined time (Hrs).
info: checker: bkpv service have run within defined time
(Hrs).
info: checker: schedulme service have run within defined
time(Hrs).

 1.3.2 High-level Checker (Example 6)
Performs the following tasks:
Recent backup for each (database, device) pair completed
successfully.
Recent TSM backup for each database must exist and
verified
Ensure that TSM copies of all logs since the last verified
TSM backup exists.
Immediate reporting and notifications to SSM.

Example 6: High Level Checker (Checkerhl) output
info: Found 56 logs for CFG DISK backup taken at
20110813041003 (2314 - 2369)
notice: Everything looks good for CFG DISK backup taken
at 20110813041003
info: Found 99 logs for SUBSYS1 DISK backup taken at
20110811045903 (3116 - 3214)
notice: Everything looks good for SUBSYS1 DISK backup
taken at 20110811045903
info: Found 96 logs for CFG TSM backup taken at
20110810041003 (2274 - 2369)
notice: Everything looks good for CFG TSM backup taken at
20110810041003
info: Found 146 logs for SUBSYS1 TSM backup taken at
20110808045903 (3069 - 3214)
notice: Everything looks good for SUBSYS1 TSM backup
taken at 20110808045903
info: Found all 4 backup combinations

1.4 Error Reporting to SSM (HPSS interface):

Exit codes are called to generate sub-class of errors based
on custom binary scheme for multiple error reporting.
To simplify error reporting and monitoring, three (3)
categories were considered to match HPSS error reporting
style.

 Minor
 Backup, verifier, or scheduler service did not run within
 defined time (Hrs).
 Backup have exceeded estimated allowable time to
 successfully complete backup.

 Check ASAP (considered critical)
 Failure to schedule expected pair (db,device)
 within the last (days).
 TSM backups and associated logs are not found.
 One or more services failed in the last (n) days.

MAJOR
 Scheduled Backups are behind schedule.
 Backup service did not run.
 Backup failed (n) times as specified in cron.
 Backup could have completed successfully but took
 longer than expected/estimated.
 Failover DB2 log paths contain logs.
 Filesystem(s) error.
 Log(s) script failure –internal error-.
 Log archiving failure: Disk or/and TSM.

LA-UR-11-05005
Approved for Public release
Distribution is unlimited.

 5

2. CONCLUSIONS
DB2RS not only adds value to HPSS native metadata
integrity monitoring and reporting tools but also ensures

that our operational staff are monitoring the health and
status of the metadata and thus reducing dramatically the
risk of loss of data and respectively the time of
recoverability.

