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User Requirements 

•  Write data from multiple processors into a single file 
•  Undo the “domain decomposition” required to 

implement parallelism 
•  File can be read in the same manner regardless of 

the number of CPUs that read from or write to the file 
–  we want to see the logical data layout… not the physical 

layout 
•  Do so with the same performance as writing one-file-

per-processor 
–  Use one-file-per-processor because of performance 

problems (would prefer one-file per application) 



Usage Model 
(focus here is on append-only I/O) 

•  Checkpoint/Restart 
–  Most users don’t do hero applications: tolerate failure by submitting more jobs (and 

that includes apps that are targeting hero-scale applications) 
–  Most people doing “hero applications” have written their own restart systems and 

file formats 
–  Typically close to memory footprint of code per dump  

•  Must dump memory image ASAP!  
•  Not as much need to remove the domain decomposition (recombiners for MxN problem) 
•  not very sophisticated about recalculating derived quantities (stores all large arrays) 
•  Might go back more than one checkpoint, but only need 1-2 of them online (staging) 
•  Typically throw the data away if CPR not required 

•  Data Analysis Dumps 
–  Time-series data most demanding 

•  Typically run with coarse-grained time dumps 
•  If something interesting happens, resubmit job with higher output rate (and take a huge 

penalty for I/O rates) 
•  Async I/O would make 50% I/O load go away, but nobody uses it! (cause it rarely works) 

–  Optimization or boundary-value problems typically have flexible output 
requirements (typically diagnostic) 



Common Storage Formats 

•  ASCII:  (pitiful… this is still common… even for 3D I/O… and you want an exaflop??) 
–  Slow 
–  Takes more space! 
–  Inaccurate 

•  Binary 
–  Nonportable (eg. byte ordering and types sizes) 
–  Not future proof 
–  Parallel I/O using MPI-IO 

•  Self-Describing formats 
–  NetCDF/HDF4, HDF5, Silo 
–  Example in HDF5: API implements Object DB model in portable file 
–  Parallel I/O using: pHDF5/pNetCDF (hides MPI-IO) 

•  Community File Formats 
–  FITS, HDF-EOS, SAF, PDB, Plot3D 
–  Modern Implementations built on top of HDF, NetCDF, or other self-

describing object-model API 



Common Data Models/Schemas 
•  Structured Grids:  

–  1D-6D domain decomposed mesh data 
–  Reversing Domain Decomposition results in strided disk access pattern 
–  Multiblock grids often stored in chunked fashion 

•  Particle Data 
–  1D lists of particle data (x,y,z location + physical properties of each particle) 
–  Often non-uniform number of particles per processor 
–  PIC often requires storage of Structured Grid together with cells 

•  Unstructured Cell Data 
–  1D array of cell types 
–  1D array of vertices (x,y,z locations) 
–  1D array of cell connectivity 
–  Domain decomposition has similarity with particles, but must handle ghost cells 

•  AMR Data 
–  Chombo: Each 3D AMR grid occupies distinct section of 1D array on disk (one array per 

AMR level). 
–  Enzo (Mike Norman, UCSD): One file per processor (each file contains multiple grids) 
–  BoxLib: One file per grid (each grid in the AMR hierarchy is stored in a separate,cleverly 

named, file) 
•  Increased need for processing data from terrestrial sensors (read-oriented) 

–  NERSC is now a net importer of data 



Physical Layout Tends to Result in 
Handful of  I/O Patterns 

•  2D-3D I/O patterns (small-block strided I/O) 
–  1 file per processor (Raw Binary and HDF5) 

•  Raw binary assesses peak performance 
•  HDF5 determines overhead of metadata, data encoding, and small 

accesses associated with storage of indices and metadata 
–  1-file reverse domain decomp (Raw MPI-IO and pHDF5) 

•  MPI-IO is baseline (peak performance) 
•  Assess pHDF5 or pNetCDF implementation overhead 

–  1-file chunked (looks like 1D I/O pattern) 

•  1D I/O patterns (large-block strided I/O) 
–  Same as above, but for 1D data layouts 
–  1-file per processor is same in both cases 
–  Often difficult to ensure alignment to OST boundaries 



Common Themes for Storage Patterns 
(alternative to prev slide) 

•  Diversity of I/O data schemas derive down two handful of I/O patterns 
at disk level 

•  1D I/O 
–  Examples: GTC, VORPAL particle I/O, H5Part, ChomboHDF5, FLASH-AMR 
–  Interleaved I/O operations with large transaction size (hundreds of kilobytes to 

megabytes) 
–  Three categories 

•  Equal sized transactions per processor 
•  Slightly unequal sized transactions per processor (not load-imbalanced, but difficult to align) 
•  Unequal sized transactions with load-imbalance (not focus of our attention) 

•  2D, 3D, >3D I/O pattern  
–  Examples: Cactus, Flash (unchunked), VORPAL 3D-IO 
–  Reverse domain decomposition 

•  Use chunking to increase transaction sizes 
•  Chunking looks like 1D I/O case 

–  Results in interleaved output with very small transaction sizes (kilobyte sized) 
•  Out-of-Core I/O 

–  Examples: MadCAP, MadBench, OOCore 
–  Very large-block transactions (multimegabyte or multigigabyte) 
–  Intense for both read and write operations 



Common Physical Layouts 
For Parallel I/O 

•  One File Per Process 
–  Terrible for HPSS! 
–  Difficult to manage 

•  Parallel I/O into a single file 
–  Raw MPI-IO 
–  pHDF5 pNetCDF 

•  Chunking into a single file 
–  Saves cost of reorganizing data 
–  Depend on API to hide physical layout 
–  (eg. expose user to logically contiguous array even though it 

is stored physically as domain-decomposed chunks) 



3D (reversing the domain decomp) 



3D (reversing the decomp) 
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3D (block alignment issues) 
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• Block updates require mutual exclusion

• Block thrashing on distributed FS

• I/O efficiency for sparse updates! (8k block required for 720 byte I/O operation

• Unaligned block accesses can kill performance! (but are necessary in practical I/O 
solutions)


Writes not aligned 

to block boundaries




Interleaved Data Issues 
Accelerator Modeling Data 

•  Point data 
–  Electrons or protons 
–  Millions or billions in a simulation 
–  Distribution is non-uniform 

•  Fixed distribution at start of simulation 
•  Change distribution (load balancing) each iteration 

•  Attributes of a point 
–  Location: (double) x,y,z 
–  Phase: (double) mx,my,mz 
–  ID: (int64) id 
–  Other attributes 

Interleaving and transaction sizes are similar to 
AMR and chunked 3D Data. 



Nonuniform Interleaved Data 
(accelerator modeling) 

Storage Format
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Nonuniform Interleaved Data 
(accelerator modeling) 

Storage Format
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Slight load imbalance, but not substantial


nonuniform alignment has huge penalty!




Nonunform interleaved 

Calculate Offsets using Collective (AllGather)
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Then write to mutually exclusive sections of array


Still suffers from alignment issues…


One array at a time




Performance Experiences 

(navigating a seemingly impossible 
minefield of constraints) 



Good performance if 
transaction is even 
multiple of stripe size




Even better if you make 
#stripes equal to 
#compute processes


Performance islands more 
pronounced.  Typical (Non-
OST-sized) cases worse.




Performance falls 
dramatically if you 
offset start of file by 
small increment (64k)




Impractical to aim for such 
small “performance islands” 

•  Transfer size for interleaved I/O must always match 
OST stripe width 
–  Difficult to constrain domain-decomposition to granularity of I/O 
–  Compromises load balancing for particle codes 
–  Not practical for AMR codes (load-balanced, but not practical to 

have exactly identical domain sizes) 

•  Every compute node must write exactly aligned to 
OST boundary 
–  How is this feasible if users write metadata or headers to their 

files? 
–  Difficult for high-level self-describing file formats 
–  Not practical when domain-sizes are slightly non-uniform (such 

as AMR, particle load balancing, outer-boundary conditions for 
3D grids) 


