
National Energy Research
Scientific Computing Center
(NERSC)

I/O Patterns from NERSC Applications

NERSC Center Division, LBNL

User Requirements

•  Write data from multiple processors into a single file
•  Undo the “domain decomposition” required to

implement parallelism
•  File can be read in the same manner regardless of

the number of CPUs that read from or write to the file
–  we want to see the logical data layout… not the physical

layout
•  Do so with the same performance as writing one-file-

per-processor
–  Use one-file-per-processor because of performance

problems (would prefer one-file per application)

Usage Model
(focus here is on append-only I/O)

•  Checkpoint/Restart
–  Most users don’t do hero applications: tolerate failure by submitting more jobs (and

that includes apps that are targeting hero-scale applications)
–  Most people doing “hero applications” have written their own restart systems and

file formats
–  Typically close to memory footprint of code per dump

•  Must dump memory image ASAP!
•  Not as much need to remove the domain decomposition (recombiners for MxN problem)
•  not very sophisticated about recalculating derived quantities (stores all large arrays)
•  Might go back more than one checkpoint, but only need 1-2 of them online (staging)
•  Typically throw the data away if CPR not required

•  Data Analysis Dumps
–  Time-series data most demanding

•  Typically run with coarse-grained time dumps
•  If something interesting happens, resubmit job with higher output rate (and take a huge

penalty for I/O rates)
•  Async I/O would make 50% I/O load go away, but nobody uses it! (cause it rarely works)

–  Optimization or boundary-value problems typically have flexible output
requirements (typically diagnostic)

Common Storage Formats

•  ASCII: (pitiful… this is still common… even for 3D I/O… and you want an exaflop??)
–  Slow
–  Takes more space!
–  Inaccurate

•  Binary
–  Nonportable (eg. byte ordering and types sizes)
–  Not future proof
–  Parallel I/O using MPI-IO

•  Self-Describing formats
–  NetCDF/HDF4, HDF5, Silo
–  Example in HDF5: API implements Object DB model in portable file
–  Parallel I/O using: pHDF5/pNetCDF (hides MPI-IO)

•  Community File Formats
–  FITS, HDF-EOS, SAF, PDB, Plot3D
–  Modern Implementations built on top of HDF, NetCDF, or other self-

describing object-model API

Common Data Models/Schemas
•  Structured Grids:

–  1D-6D domain decomposed mesh data
–  Reversing Domain Decomposition results in strided disk access pattern
–  Multiblock grids often stored in chunked fashion

•  Particle Data
–  1D lists of particle data (x,y,z location + physical properties of each particle)
–  Often non-uniform number of particles per processor
–  PIC often requires storage of Structured Grid together with cells

•  Unstructured Cell Data
–  1D array of cell types
–  1D array of vertices (x,y,z locations)
–  1D array of cell connectivity
–  Domain decomposition has similarity with particles, but must handle ghost cells

•  AMR Data
–  Chombo: Each 3D AMR grid occupies distinct section of 1D array on disk (one array per

AMR level).
–  Enzo (Mike Norman, UCSD): One file per processor (each file contains multiple grids)
–  BoxLib: One file per grid (each grid in the AMR hierarchy is stored in a separate,cleverly

named, file)
•  Increased need for processing data from terrestrial sensors (read-oriented)

–  NERSC is now a net importer of data

Physical Layout Tends to Result in
Handful of I/O Patterns

•  2D-3D I/O patterns (small-block strided I/O)
–  1 file per processor (Raw Binary and HDF5)

•  Raw binary assesses peak performance
•  HDF5 determines overhead of metadata, data encoding, and small

accesses associated with storage of indices and metadata
–  1-file reverse domain decomp (Raw MPI-IO and pHDF5)

•  MPI-IO is baseline (peak performance)
•  Assess pHDF5 or pNetCDF implementation overhead

–  1-file chunked (looks like 1D I/O pattern)

•  1D I/O patterns (large-block strided I/O)
–  Same as above, but for 1D data layouts
–  1-file per processor is same in both cases
–  Often difficult to ensure alignment to OST boundaries

Common Themes for Storage Patterns
(alternative to prev slide)

•  Diversity of I/O data schemas derive down two handful of I/O patterns
at disk level

•  1D I/O
–  Examples: GTC, VORPAL particle I/O, H5Part, ChomboHDF5, FLASH-AMR
–  Interleaved I/O operations with large transaction size (hundreds of kilobytes to

megabytes)
–  Three categories

•  Equal sized transactions per processor
•  Slightly unequal sized transactions per processor (not load-imbalanced, but difficult to align)
•  Unequal sized transactions with load-imbalance (not focus of our attention)

•  2D, 3D, >3D I/O pattern
–  Examples: Cactus, Flash (unchunked), VORPAL 3D-IO
–  Reverse domain decomposition

•  Use chunking to increase transaction sizes
•  Chunking looks like 1D I/O case

–  Results in interleaved output with very small transaction sizes (kilobyte sized)
•  Out-of-Core I/O

–  Examples: MadCAP, MadBench, OOCore
–  Very large-block transactions (multimegabyte or multigigabyte)
–  Intense for both read and write operations

Common Physical Layouts
For Parallel I/O

•  One File Per Process
–  Terrible for HPSS!
–  Difficult to manage

•  Parallel I/O into a single file
–  Raw MPI-IO
–  pHDF5 pNetCDF

•  Chunking into a single file
–  Saves cost of reorganizing data
–  Depend on API to hide physical layout
–  (eg. expose user to logically contiguous array even though it

is stored physically as domain-decomposed chunks)

3D (reversing the domain decomp)

3D (reversing the decomp)

Logical

Physical

3D (block alignment issues)

720 bytes
 720 bytes

Logical

Physical

8192 bytes

• Block updates require mutual exclusion

• Block thrashing on distributed FS

• I/O efficiency for sparse updates! (8k block required for 720 byte I/O operation

• Unaligned block accesses can kill performance! (but are necessary in practical I/O
solutions)

Writes not aligned

to block boundaries

Interleaved Data Issues
Accelerator Modeling Data

•  Point data
–  Electrons or protons
–  Millions or billions in a simulation
–  Distribution is non-uniform

•  Fixed distribution at start of simulation
•  Change distribution (load balancing) each iteration

•  Attributes of a point
–  Location: (double) x,y,z
–  Phase: (double) mx,my,mz
–  ID: (int64) id
–  Other attributes

Interleaving and transaction sizes are similar to
AMR and chunked 3D Data.

Nonuniform Interleaved Data
(accelerator modeling)

Storage Format

. . .
X

Y

Z

…

Laid out sequentially on disk

but view is interleaved on per-processor basis

X1
X2
X3
X4
X5
X6
X7
 Xn

0
 NX-1

NX
 NX + NY-1

NX + NY

Y1
Y2
 Yn

Nonuniform Interleaved Data
(accelerator modeling)

Storage Format

X

Y

Z

…

P1
 P2

1.2Megs
 0.9M

P3

1.1Megs

. . .
X1
X2
X3
X4
X5
X6
 ..
 Xn

Y1
Y2
 Yn

Slight load imbalance, but not substantial

nonuniform alignment has huge penalty!

Nonunform interleaved

Calculate Offsets using Collective (AllGather)

X

Y

Z

…

P1
 P2

1.2Megs
 0.9M

P3

1.2Megs

Offset 0
 off=1.1M
 off=2.1M

Then write to mutually exclusive sections of array

Still suffers from alignment issues…

One array at a time

Performance Experiences

(navigating a seemingly impossible
minefield of constraints)

Good performance if
transaction is even
multiple of stripe size

Even better if you make
#stripes equal to
#compute processes

Performance islands more
pronounced. Typical (Non-
OST-sized) cases worse.

Performance falls
dramatically if you
offset start of file by
small increment (64k)

Impractical to aim for such
small “performance islands”

•  Transfer size for interleaved I/O must always match
OST stripe width
–  Difficult to constrain domain-decomposition to granularity of I/O
–  Compromises load balancing for particle codes
–  Not practical for AMR codes (load-balanced, but not practical to

have exactly identical domain sizes)

•  Every compute node must write exactly aligned to
OST boundary
–  How is this feasible if users write metadata or headers to their

files?
–  Difficult for high-level self-describing file formats
–  Not practical when domain-sizes are slightly non-uniform (such

as AMR, particle load balancing, outer-boundary conditions for
3D grids)

