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Porous media flow

« Continuity equation (mass conservation)

« Darcy’s law in place of momentum eqgn.

(Figure from Hornberger et al., 1998, Elements of Physical Hydrology)
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Porous media flow

« Continuity equation (mass conservation)

« Darcy’s law in place of momentum eqgn.
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(Figure from Groundwater Hydrology lecture notes, Prof. Charles Harvey, MIT)
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PFLOTRAN governing equations

Mass Conservatlon Flow Equations
—(¢8 p.X)+00aq,0, X - ¢8,Df p,0X ] =Q°
kk
L=, O(p, -W,0,92) Po = Py~ Py

Energy Conservation Equation
2rzs.pu, +a-opcT]r0dEanH, -0T]- Q.

Multicomponent Reactive Transport Equations

El qon LIJ"]+DE[§Q ]——ZV . +Q,
Total Concentration Total Solute Flux
ija 2501(:? +;VjiCia QT =(_T¢SaDaD+qﬂ)LPJ'a
Mineral Mass Transfer Equation

Koy | p+Y @ =1
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PFLOTRAN governing equations

Mass Conservatlon Flow Equations
—(¢8 p.X)+00aq,0, X - ¢8,Df p,0X ] =Q°

kk
q,=- ﬂ“ O(p, ~W,0,92) P, = Ps = Pegs

. \ Darcy’s law

Energy Conservation Equation (homogenized momentum eq.)
[cazs PV, +A-9pcT O apH, -xOT =,

Multicomponent Reactive Transport Equations
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PFLOTRAN governing equations

Mass Conser\gation: Flow Equations
E (@aloaxia) + D [[qapaxia - @aDiapaDXia] = Qia

qa = _%Q D pa a Z) pa = pﬂ - pc,a',B
7 Relative permeability depends on
Energy Conservation Equation saturation -- introduces nonlinearity

2rzs.pu, +a-opcT]r0dEanH, -0T]- Q.

Multicomponent Reactive Transport Equations

g [¢z S"Lpla]+ - EEQ“]: ~2Vpln +Q

Total Concentration Total Solute Flux
LPja 2501(:? +;VjiCia QT =(_T¢SaDaD+qﬂ)LPJ'a
Mineral Mass Transfer Equation Nonlinear function of the concentratign
¢ of primary chemical components
dmzvmlm ¢+z¢m=1
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Integrated finite-volume discretization

Form of governing %+ O0F=S F =gpX - ¢DpLIX
equation:

Integrated finite-volume [Fan

discretization " }“\

v k+1 k V
= (A= A)r+3TF A SV
Discretized residual equation: R A")At v A =Sy
X =X

d +d

F. =(a0),, X, —(¢Dp),,

n'

(Inexact) Newton iteration: ZJLnd(if =-R J ==

12 Managed by UT-Battelle
for the Department of Energy ~ presenta ion_name




Domain-decomposition parallelism

Single
Processor
Domain

« PFLOTRAN parallelism comes from
domain decomposition.

Ghost Nodes

« Each processor responsible for
nodes in one subdomain.
(Plus associated vector, matrix
entries)

« Accumulation terms are simple: Each processor
calculates terms for the nodes it owns.

e Flux terms more complicated:
— Must calculate fluxes across subdomain boundaries.
— Scatter/gather of ghost nodes required ( halo exchanges)
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PFLOTRAN architecture

* Built on top of PETSc, which provides

— Obiject-oriented management of parallel data structu res,
» Create parallel objects (e.g., matrices and vectors ) over a set of processors.
* Methods (e.g., Mat Mul t () )called on those objects handle parallel coordin ation.

— Parallel solvers and preconditioners,

— Efficient parallel construction of Jacobians and res iduals
We provide
— Initialization, time-stepping, equations of state, post-processing

— Functions to form residuals (and, optionally, Jacob ians) on a local patch
(PETSc routines help us with patch formation by sett Ing up scatter/gather contexts)

Flow of Control for PDE Solution

Nonlinear Solvers (SNES)

Linear Solvers (KSP)
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Building PFLOTRAN with PETSc

« PETSc has allowed us to develop a complex,
scalable code in very little time:

— Initial TRAN by Glenn Hammond for DOE CSGF practicum
— Initial FLOW by Richard Mills for DOE CSGF practicum

— Subsequent development of multiphase modules by Pet er
Lichtner and Chuan Lu during Lu’s postdoc

— Rapid improvements during SciDAC project
« PETSc is more than just a “solvers package”

* Provides a comprehensive framework:

— Parallel mesh and associated linear algebra object
management

— Nonlinear solvers

— Linear (iterative) solvers

— Performance logging and debugging
— Interfaces to many other packages
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PETSc mesh management

« PETSc has greatly facilitated mesh management
DM for general grids (experimental)

« DA for structured grids

* Provides support for
— Scatter/gather of ghost points according to a stenc 1

— Mapping between natural (application), global (PETS c¢),
and local (ghosted) orderings

— Hierarchies of grids via DMMG objects
* Multilevel solve via DMMGSolve().
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PETSc nonliner solver framework

* Inexact Newton with various globalization strategies (line
search, trust region)

e User provides SNES with

— Residual: Pet scError Code (*func) (SNES snes, Vec
X, Vec r, void *ctx)

— Jacobian: Pet scError Code (*func) (SNES snes, Vec
X, Mat *J, Mat *M Mat Structure *flag, void
*Cct X)

« Our functions expect a patch
(local, contiguous region at single refinement level ).

* Assembly of patch facilitated by PETSc
(or SAMRAI in case of AMR)

18 Managed by UT-Battelle
for the Department of Energy ~ presenta ion_name




Outline

e Subsurface flow and reactive transport

e Governing eqns, discretization, solution

« Code architecture and PETSc framework
 Hanford 300 Area application and performance
* Ongoing research and associated challenges
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Hanford 300 Area Layout
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Shaded 300 Area Uranium, June 1994

Shaded 300 Area Uranium, June 2005
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Hanford Modeling Challenges

3D Domain: length and time scales

— field scale domain (~km)

— hourly river fluctuations , ~ 1000 year predictions
— fast flow rates (5 km/y)

 Complex Chemistgy: Na-K-Ca-Fe-Mg-Br-N-CO ,-P-S-Cl-
Si-U-Cu-H,0 (=15 primary species)

e Multiscale processes ( um-m)

* Highly heterogeneous sediments
— fine sand, silt; coarse gravels; cobbles

e Variably saturated environment
* Frequent and large river-stage fluctuations
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Jaguar: ORNL Cray XTS5

e 37538 quad-core 2.3 GHz Opteron compute nodes (15015 2 CPU compute cores)
— Also additional nodes to handle OS services (I/0, e tc.)

* 1.4 petaflops theoretical peak performance

e 300 Terabytes aggregate RAM; 10000 Terabytes parall el disk storage
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Solvers for Hanford 300 benchmark

* Inexact Newton method
— Often With cubic line search for transient flow proble ms

 BICGstab linear solver
* Preconditioned with block-Jacobi
* ILU(O) applied on each block

* Nothing fancy, but we have been surprised by how we i
this has worked!

« (Have also tried simple geometric multigrid; algebr aic
multigrid with Hypre, but have not yet gotten better
performance out of them at high core counts.)
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Hanford 300 area: Strong scaling
e 270 million DoF (1350 x 2500 x 80 grid)

PFLOTRAN strong scaling
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270 M DoF: Flow: BiCGstab its
e 270 million DoF (1350 x 2500 x 80 arid)

PFLOTRAN strong scaling
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Hanford 300 area: Strong scaling
e 270 million DoF (1350 x 2500 x 80 arid)
PFLOTRAN strong scaling
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Hanford 300 area: Strong scaling
e 270 million DoF (1350 x 2500 x 80 grid)

PFLOTRAN strong scaling PFLOTRAN strong scaling
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BiCGStab improvements

e Cost of MPI_Allreduce() calls inside Krylov solver are big
scalability barrier

« Original PETSc BiCGstab had 4 allreduces/iteration (inclu ding
convergence check)

« Reworked PETSc BiICGstab has 3

* Also added “Improved” BiCGStab (IBCGS)

— Considerably more complicated: requires transpose m atrix vector
product, extra vector operations

— Only 2 MPI_Allreduce()’s per iteration required

— By lagging residual norm calc., can wrap everything into one
MPI_Allreduce(), at cost of doing one additional IB  CGS iteration

Group BCGS IBCGS
16384 core, MPI_SYNC | 196 120
30 time step run: | MPI 150 79
User 177 200
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Possible near-term improvements

Savings Required Time (focused)
Reorganize 3-4% Coding 20-30 hours
MatSolve
BiCGStab w/ 1 20% Coding 10 hours
reduction poNE
Eisenstat- 20-30% Thinking and 24 hours
Walker experimentation
Geometric 0-50% Coding, 30 (?) hours
multigrid experimentation,

thinking

GOOD 0-70% Brilliance 27?7
preconditioner

Maybe improve exact same run by 35% in next six months.
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2B DoF: Flow + Transport: Transport
« 2 billion DoF (850 x 1000 x 160 grid, 15 species)

(Limit of 32-bit indices!)
PFLOTRAN strong scaling: 2B DoF transport
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What about 1/0?

« Above 8000K cores, serial I/O becomes impractical

* Added parallel IO:

— MPI-10 backend to PETSc Viewers
(for checkpoints)

— Parallel HDF5 input/output
(for input files, simulation output files)

* This fixed lots of problems, but initialization was still
a big problem above 16384 cores

— Lots of reads from single, large HDF5 file
* Every process parses entire file

« Each process read chunk of data set starting from | ts offset
— Problem: Only 1 meta-data server! All the file/opencl oses
hammer it!

— Solution: only subset of procs read, then broadcast to
others
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Adaptive mesh refinement (AMR)

* Incorporating AMR via the SAMRAI package from LLNL.

 AMR introduces local fine resolution only in region s where needed:
Significant reduction in costs for simulations w/ | ocalized fine features.

 AMR provides front tracking capability in the prima ry grid that can range
from centimeter to tens of meters.

e Sub-grid scale models can be introduced in regions of significant activity
and not at every node within the 3D domain.
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Adaptive mesh refinement (AMR)
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Upscaling

« Governing equations depend on averages of highly variab le
properties (e.g., permeability) averaged over a samplin g window
(REV).

e Upscaling and AMR go hand-in-hand: as the grid is
refined/coarsened, material properties such as permeabi lity
must be calculated at the new scale in a self-consi  stent manner.

Above: A fine-scale realization (128 x 128) of a random permeability field,
K(X,y)=¢ "™, Zuniformly distributed in (0,1)g=5

followed by successively upscaled fields (M x N, N= 32, 16, 4, 1)
obtained with Multigrid Homogenization (Moulton et al., 1998)
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Outline

e Subsurface flow and reactive transport

e Governing eqns, discretization, solution

« Code architecture and PETSc framework

« Hanford 300 Area application and performance
* Ongoing research and associated challenges

e Summary and future directions
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Where now?

Using PETSc, we have developed a code, PFLOTRAN, th at is now

* Highly modular, object-oriented, extensible

« Can scale all the way from laptop computers to the largest scale computers
in the world
— Not nearly as efficient as we might like...
— ...but capable of solving leadership-class simulation problems NOW

Current focus is now on

— Unstructured grid implementation.
Critical for several problems we want to run on Jag uar.

— Multiple-continuum support
— Making structured adaptive mesh refinement really w ork

— Developing better solvers/preconditioners
* Multilevel (geometric and algebraic approaches)
* Physics-based
* For flow solver, able to deal with phase transition S

Also need to think about
— Exotic and emerging architectures (e.g., GPGPUs, Ce [l, many cores)
— How to visualize simulations with billions of DoFs?
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Further simulation studies

Hanford 300 Area

— Geochemical transport of uranium
in variably saturated soill

— ~ 500M-1B grid cells (.5 x .5 x .5 m resolution)
— 10-20 chemical degrees of freedom
— ~ 10 billion total degrees of freedom

 CO2 sequestration at SACROC unit

¢ CO2 sequestration in lllinois basin
* Radionuclide migration at Nevada Test Site
« Contaminant migration at Oak Ridge sites

* Other applications?
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