PERFORMANCE ENGINEERING

Understanding and

IMPROVING

Large-Scale GODES

Achieving good performance on high-end computing systems is growing ever more
challenging due to enormous scale, increasing architectural complexity, and
increasing application complexity. To address these challenges in DOE’s SciDAC-2
program, the Performance Engineering Research Institute has embarked on an
ambitious research plan encompassing performance modeling and prediction,
automatic performance optimization, and performance engineering of high-profile

Within just five years,
systems with one million
processors are
expected, which poses a
challenge not only to
application developers
but also to those
engaged in performance
tuning.

applications.

A SciDAC Institute

Understanding and enhancing the performance
of large-scale scientific programs is a crucial com-
ponent of the high-performance computing
world. This is due not only to the increasing
processor count, architectural complexity, and
application complexity, but also to the sheer cost
of these systems. A quick calculation shows that
a 30% increase in the performance of two of the
major SciDAC applications codes—which
together use approximately 10% of the National
Energy Research Scientific Computing (NERSC)
Center and Oak Ridge National Laboratory
(ORNL) high-end systems over three years—rep-
resents a saving of around $6 million.

Within just five years, systems with one million
processors are expected, which poses a challenge
not only to application developers but also to
those engaged in performance tuning. Earlier
research and development by us and others in the
performance research area focused on the mem-
ory wall—the rising disparity between processor
speed and memory latency. Now the emerging
multi-core commodity microprocessor designs,
with many processors on a single chip and large
shared caches, create even greater penalties for off-

chip memory accesses and further increase opti-
mization complexity. With the release of systems
such as the Cray X1, custom vector processing sys-
tems have re-emerged in U.S. markets. Other
emerging designs include single-instruction mul-
tiple-data (SIMD) extensions, field-programma-
ble gate arrays (FPGAs), graphics processors, and
the Sony-Toshiba—IBM Cell processor. Under-
standing the performance implications for such
diverse architectures is a daunting task.

In concert with the growing scale and complex-
ity of the systems is the growing scale and com-
plexity of the scientific applications themselves.
Applications are increasingly multilingual, with
source code and libraries created using a blend of
Fortran 77, Fortran 90, C, C++, Java, and even
interpreted languages such as Python. Large
applications typically have rather complex build
processes, involving code preprocessors, macros,
and make files. Effective performance analysis
methodologies must deal seamlessly with such
structures. Applications can be large, often
exceeding one million lines of code. Optimiza-
tions may be required at many locations in the
code, and seeming local changes can affect global
data structures. Applications are often compo-

26

ScIDAC REVIEW WINTER 2007 WWW.SCIDACREVIEW.ORG

BIG SCIENCE

APPLICATIONS

4y
Omatic perform®®

Tuning,

v

Figure 1. The three components of the SciDAC Performance Engineering Research Institute (PERI).

nentized and performance can depend signifi-
cantly on the context in which the components
are used. Finally, applications increasingly involve
advanced features such as adaptive mesh refine-
ment, data-intensive operations, and multi-scale,
multi-physics, and multi-method computations.

The Performance Engineering Research Insti-
tute (PERI) emphasizes three aspects of perform-
ance tuning for high-end systems and the
complex SciDAC applications that run on them:

ScIDAC REVIEW WINTER 2007 WWW.SCIDACREVIEW.ORG

e Performance modeling of applications
and systems

e Automatic performance tuning

e Application engagement and tuning

Figure 1 illustrates the interplay of PERI's activ-
ities, which are the focus of this article. The next
section discusses the modeling activities under-
taken both to better understand the performance
of applications and to determine reasonable

AINOL "Y INOILYHLSNT|

PERFORMANCE ENGINEERING

Figure 2. Heat release (red) and progress variable (purple) of a turbulent lean methane—air Bunsen flame simulated using S3D. The volume
rendering was performed by Dr. Hiroshi Akiba and Dr. Kwan-Liu Ma of the Univerisity of California—Davis and the SciDAC Institute for Ultra-Scale
Visualization, and by Dr. Ramanan Sankaran, Dr. Evatt R. Hawkes, and Dr. Jacqueline H. Chen of SNL.

Automating
performance tuning is a
long-term research
project, and the SciDAC
program has scientific
objectives that will
benefit greatly from its
outcome.

bounds on expected performance. Following that
is a presentation of the PERI vision for creating an
automatic performance tuning capability, which
ideally will alleviate scientific programmers of this
burden. Automating performance tuning is a long-
term research project, and the SciDAC program
has scientific objectives that will benefit greatly
from its outcome. This is followed by a discussion
of how PERI s engaging with DOE computational
scientists to address today’s most pressing per-
formance problems. The article concludes with a
summary of the current state of the PERI SciDAC-
2 project. This effort is just beginning, but substan-
tial progress has been made, both in forming the
team and striving towards meeting goals—the
near-term goal of helping DOE successfully tran-
sition into the petascale era and the long-term
research goal of automating the process of per-
formance tuning (sidebar “PERI Goals,” p29).

Performance Modeling and Prediction

The goal of performance modeling is to under-
stand the performance of an application on a
computer system via measurement and analysis.
This information can be used for a variety of
tasks: evaluating architectural tradeoffs early in
the system design cycle, validating performance
of a new system installation, guiding algorithm
choice when developing a new application,
improving optimization of applications on spe-
cific platforms, and guiding the application of
techniques for automated tuning and optimiza-
tion. Modeling is now an integral part of many
high-end system procurements, thus making per-

formance research useful beyond the confines of
performance tuning. For performance engineer-
ing, modeling analyses—when coupled with
empirical data—can signal when tuning is
needed and, just as importantly, when tuning is
complete. Naturally, if models are to support
automatic performance tuning, then the models
themselves must be automatically generated.

Traditional performance modeling and predic-
tion has been done via some combination of three
methods—analytical modeling, statistical mod-
eling derived from measurement, and simulation.
In the earlier SciDAC-1 Performance Evaluation
Research Center (PERC), researchers developed a
semi-automatic yet accurate methodology based
on application signatures, machine profiles and
convolutions. These methodologies allow us to
predict performance to within reasonable toler-
ances for an important set of applications on tra-
ditional clusters of SMPs for specific inputs and
processor counts.

PERI is extending these techniques to account not
only for the effects of emerging architectures, but
also to model scaling of input and processor counts.
It has been shown that modeling the response of a
system’s memory hierarchy to an application’s
workload is crucial for accurately predicting its per-
formance on today’s systems with their deep mem-
ory hierarchies. The current state-of-the-art works
well for weak scaling, that is, increasing the proces-
sor count proportionally with input. PERI is devel-
oping advanced schemes for modeling application
performance, such as by using neural networks.
Researchers are also exploring variations of exist-

28

ScIDAC REVIEW WINTER 2007 WWW.SCIDACREVIEW.ORG

=
>
s
g
>
z
=
=
S
=
]
3
c
¥
o
2
=
2
s
B
3

I EEEEEEEE— One of the goals is to

PERI Goals

The Performance Engineering Research Institute for
Enabling Technology (PERI) is a SciDAC Institute
focused on delivering petascale performance to
complex scientific applications running on Leadership
Class computing systems.

As SciDAC and the scientific computing community
look to the future, achieving good performance on high-
end computing (HEC) systems is growing ever more
challenging due to enormous scale, increasing
architectural complexity, and increasing application
complexity. To address these challenges, PERI is pursuing
a unified, tripartite research plan encompassing:

@ Performance modeling and prediction
@ Automatic performance optimization
@ Performance engineering of high profile applications

The PERI performance modeling and prediction
activity will develop and refine performance models.

ClockX2

Figure 3. Kiviat diagram of Power4 system options.

ing techniques and parameterized statistical mod-
els built from empirical observations to predict
application scaling. This Institute is also pursuing
methods for automated extrapolation of scaling
models, as a function of increasing processor count,
while holding the input constant. One of the goals
is to provide the ability to reliably forecast the per-
formance of a code on a machine size that has not
yet been built.

PERI s also extending the framework to model
communication performance as a function of the
type, size, and frequency of application messages,
and the characteristics of the interconnect. Sev-
eral parallel communication models have been

This will significantly reduce the cost of collecting data
upon which the models are based, and will increase
model fidelity and speed.

The automatic performance optimization effort is
spurred by the strong user preference for automatic
tools. This work is building on previous successful
activities such as ATLAS, which has automatically tuned
components of the LAPACK linear algebra library, the
highly successful FFTW library, and other recent work
(sidebar “Software Overview,” p32).

In the third major component, application
engagement, PERI directly interacts with SciDAC
applications, including tiger teams that focus on
particular codes (sidebar “The GTC Tiger Team,” p34).

The PERI website (Further Reading, p35) highlights
the tools and publications produced by the PERI
project, and most of the ongoing work and discussion
can be found on the PERI wiki:
http://www.peri-scidac.org/wiki/index.php/Main_Page

developed that predict performance of message-
passing operations based on system parameters.
Assessing the parameters for these models within
local area networks is relatively straightforward
and the methods to approximate them have
already been established, and so they are well
understood. The models, which are similar to
PlogP, capture the effects of network bandwidth
and latency; however, a more robust model must
also account for noise, contention, and concur-
rency limits. PERI is developing performance
models directly from observed characteristics of
applications on existing architectures. Predictions
from such models can serve as the basis to opti-
mize collective MPI operations, and permit us to
predict network performance in a very general
way. This work will require us to develop a new
open-source network simulator to analyze com-
munication performance.

Finally, researchers will reduce the time needed
to develop models, since automated tuning
requires on-the-fly model modification. For exam-
ple, a compiler or application may propose a code
change in response to a performance observation
and need an immediate forecast of the perform-
ance impact of the change. Dynamic tracing—the
foundation of current modeling methods—
requires running existing codes and can be quite
time consuming. Static analysis of binary executa-
bles can make trace acquisition much faster by
limiting it to only those features that are not
known before execution. User annotations can

provide the ability to
reliably forecast the
performance of a code
on a machine size that
has not yet been built.

ScIDAC REVIEW WINTER 2007 WWW.SCIDACREVIEW.ORG

29

PERFORMANCE ENGINEERING

Most of the energy
consumed by mankind
is derived from
combustion, and S3D
was developed to help
scientists better model
and understand its
fundamental properties.

Source Code

Analysis
]

Transformations

Code Generation

Code Selection

Application Assembly

Guidance

* Measurements

* Models

* Hardware Information
* Sample Input

* Annotations

* Assertions

Domain-Specific
Code Generation

Runtime Performance Data

™

Training Runs ngéjc”uct?(?nn

Persistent Database

Runtime
. N Adaption <

Figure 4. The PERI automatic tuning workflow. Blue polygons indicate specific tools or parts of tools to support
automated empirical tuning. Yellow ovals indicate activities that are part of a code that is using automatic tuning at
runtime. Green hexagons indicate information may be supplied to guide the optimization selection during empirical
tuning. The large green hexagon lists the type of information that may be used.

broaden the reach of modeling by specifying at a
high level the expected characteristics of code
fragments. Application phase modeling can
reduce the amount of data required to form mod-
els. PERI s exploring less expensive techniques to
identify dynamic phases through statistical sam-
pling and time-series cluster analysis. For on-the-
fly observation, Dynlnst is being used to attach to
arunning application, slow it down momentarily
to measure something, then detach. PERI will
advance automated, rapid, machine-independent
model formation to push the efficacy of perform-

ance modeling down into lower levels of the appli-
cation and architecture lifecycle.

Modeling Combustion

PERTI’s collaboration with the S3D code team at
Sandia National Laboratories (SNL) serves as a
good example of modeling work. Most of the
energy consumed by mankind is derived from
combustion, and S3D was developed to help sci-
entists better model and understand its fundamen-
tal properties. Figure 2 (p28) depicts the heat
release rate and progress variable of a turbulent

30

ScIDAC REVIEW WINTER 2007 WWW.SCIDACREVIEW.ORG

AIAOL "V INOILYHLSNT|

lean methane-air Bunsen flame. Figure 3 (p29) is
aKiviat diagram showing predicted performance
improvements relative to the IBM Power4 archi-
tecture (normalized to 1) for a two-fold improve-
ment in dimensions of CPU clockspeed, L1
bandwidth, L2 bandwidth (inclusive of L1), L3
bandwidth (inclusive of L1 and L2), and main
memory bandwidth. Note that S3D has some
floating-point limited code, so there is some
improvement to be had by doubling the clock, and
hence the floating-point issue rate. But, as is usual
for many of these models of scientific codes, there
appears to be more to be gained by doubling band-
width to lower levels of the memory hierarchy.
From a performance tuning perspective it appears
that optimizations affecting data layout and work-
ing set size to improve cache miss rates would
yield the most significant improvements.

Automatic Performance Tuning

In discussions with application scientists it is clear
that users want to focus on their science, and not
be burdened with optimizing their code’s per-
formance. Thus, the ideal performance tool ana-
lyzes and optimizes performance without human
intervention, a long-term vision termed auto-
matic performance tuning. This vision encom-
passes tools that analyze a scientific application,
both as source code and during execution, gener-
ate a space of tuning options, and search for a
near-optimal performance solution. There are
numerous daunting challenges to realizing the
vision, including enhancement of automatic code
manipulation tools, automatic run-time param-
eter selection, automatic communication opti-
mization, and intelligent heuristics to control the
combinatorial explosion of tuning possibilities.
On the other hand, PERI is encouraged by recent
successful results such as ATLAS, which has auto-
matically tuned components of the LAPACK lin-
ear algebra library (sidebar “Software Overview,”
p32). Researchers are also studying techniques
used in the highly successful FFTW library and
several other related projects.

Figure 4 illustrates the automated performance
tuning process and integration pursued by PERI.
Researchers are attempting to integrate perform-
ance measurement and modeling techniques with
code transformations to create an automated tun-
ing process for optimizing complex codes on
large-scale architectures. The result will be an
integrated compile-time and run-time optimiza-
tion methodology that can reduce dependence on
human experts and automate key aspects of code
optimization. The color and shape code in figure
4 indicates the processes associated with the
automation of empirical tuning on either libraries
or whole applications.

C Doitgen Calling Tuned mv
C Doitgen Calling Atlas mv
C Doitgen Calling Simple mv
C Doitgen

Fortran Doitgen Reference
Fortran Doitgen RH Tuned

AINOL "V NOILYHLSNTI|

Figure 5. Early automatic tuning result for the doitgen kernel of MADNESS.

As shown in figure 4, the main input to the auto-
matic tuning process is the application source code.
In addition, there may also be external code such as
libraries, ancillary information such as perform-
ance models or annotations, sample input data, and
historical data from previous executions and analy-
ses. With these inputs, it is anticipated that the auto-
matic tuning process involves the following steps:

Triage. This step involves performance measure-
ment, analysis, and modeling to determine
whether an application has opportunities for
optimization.

Semantic analysis. This step involves analysis of
program semantics to support safe transforma-
tion of the source code, including traditional
compiler analyses to determine data and control
dependencies. Here, semantic information pro-
vided by the user can also be exploited.

Transformation. Transformations include tradi-
tional optimizations such as loop optimizations
and in-lining, as well as more aggressive data
structure reorganizations and domain-specific
optimizations. Tiling transformations may be
parameterized to allow for input size and
machine characteristic tuning. Unlike traditional
compiler transformations, this allows user input.

Code generation. The code generation phase
produces a set of possible implementations to
be considered. Code generation may either
come from general transformations to source
code in an application or from a domain-spe-
cific tool that produces a set of implementations
for a given computation, as is the case with the
ATLAS BLAS generator.

ScIDAC REVIEW WINTER 2007 WWW.SCIDACREVIEW.ORG

31

PERFORMANCE ENGINEERING

There likely will not be a
single automatic tuning
tool, but rather a suite
of interacting tools
which are themselves
research projects.

Software Overview

The following provides an overview of PERI performance
analysis software. More detailed information about each
software tool can be found on individual tool
homepages, which are provided below, and as links at:
http://www.peri-scidac.org/perci/tools/

Active Harmony is software architecture that supports
distributed execution of computational objects and
emphasizes adapting to heterogeneous and changing
environments.

http://www.dyninst.org/harmony/

ATLAS (Automatically Tuned Linear Algebra Software)
provides C and Fortran 77 interfaces to a portably
efficient BLAS implementation, as well as a few routines
from LAPACK.

http://math-atlas.sourceforge.net/

HPCToolkit is an open-source suite of multi-platform
tools for profile-based performance analysis of
applications.
http://www.hipersoft.rice.edu/hpctoolkit/

KOJAK is a trace-based performance-analysis tool for
parallel applications supporting the programming
models MPI, OpenMP, SHMEM, and combinations
thereof. It includes instrumentation, post-processing of
performance data, and result presentation.
http://icl.cs.utk.edu/kojak/

mpiP is a lightweight profiling library for MPI
applications.
http://sourceforge.net/projects/mpip

Offline search. This phase evaluates the gener-
ated code to select the “best” version. Offline
search entails running the generated code and
searching for the best-performing implementa-
tion. The search process may be constrained by
guidance from a performance model or user
input. By viewing these constraints as guidance,
PERI allows the extremes of pure search-based,
model-based, or user-directed, as well as arbi-
trary combinations.

Application assembly. At this point, the compo-
nents of optimized code are integrated to pro-
duce an executable code, including possible

instrumentation and support for dynamic tuning.

Training runs. Training runs involve a separate exe-
cution step designed mainly to produce perform-
ance data for feedback into the optimization

0SKI (Optimized Sparse Kernel Interface) is a collection
of low-level C primitives that provide automatically tuned
computational kernels on sparse matrices.
http://bebop.cs.berkeley.edu/oski/

PAPI (Performance Application Programming Interface)
provides a cross-platform interface to the hardware
performance counters found in most modern
MiCroprocessors.

http://icl.cs.utk.edu/papi/

PDT (Program Database Toolkit) is a framework for
analyzing source code written in several programming
languages. It is useful for making rich program
knowledge accessible to developers of static and
dynamic analysis tools.
http://www.cs.uoregon.edu/research/pdt

Rose is a project to define a new type of compiler
technology that allows compilation techniques to
address the optimization of user-defined abstractions.
Tools support C, C++, and Fortran 90.
http://www.lInl.gov/CASC/rose/

SvPablo is a graphical performance analysis environment for
performance tuning and visualization. This tool supports

both interactive and automatic source-code instrumentation.
http://www.renci.org/projects/pablo.php

TAU is a portable profiling and tracing toolkit for
performance analysis of parallel programs written in
Fortran, C, C++, Java, and Python.
http://www.cs.uoregon.edu/research/tau

process. This step may be used prior to a large run to
have the code well-tuned for a particular input set.

Online adaptation. Finally, optimizations may
occur during production runs, especially for
problems or machines whose optimal configu-
ration changes during the execution.

Automatic tuning of a particular application
need not involve all of these steps. Furthermore,
there likely will not be a single automatic tuning
tool, but rather a suite of interacting tools which
are themselves research projects.

A key part of the automatic tuning process is the
maintenance of a persistent store of performance
information from both training and production
runs. Of particular concern are changes in the
behavior of production codes over time. Such
changes can be symptomatic of changes in the

32

ScIDAC REVIEW WINTER 2007 WWW.SCIDACREVIEW.ORG

=
@
o
<
=
k4
°
=
z
z
3
i
=
B

Figure 6. DNA base pair stacking energy calculations
using the MADNESS code.

hardware, of the versions and configuration of sys-
tem software, of changes to the application, or of
changes to problems being solved. Regardless of
the source, such changes require analysis and
remediation. The problem of maintaining persist-
ent performance data is recognized across the HPC
community. PERI therefore formed a Performance
Database Working Group, which involves PERI
researchers as well as colleagues at the University
of Oregon, Portland State University, and Texas
A&M University. The group has developed tech-
nology for storing performance data collected by
a number of performance measurement and
analysis tools, including TAU, PerfTrack, Prophesy,
and SvPablo. The PERI Database system provides
web interfaces that link to the performance data
and analysis tools in each tool’s home database.

Application to MADNESS

While automatic tuning is PERI’s long-term
research goal, several of PERI’s research groups
have already applied their autotuning frameworks
to doitgen, a core computational kernel in MAD-
NESS (“Speed and Precision in Quantum Chem-
istry,” SciDAC Review, Spring 2007, p54), which
computes the reduction sum of a three-dimen-
sional matrix multiplied by a two-dimensional
matrix. The group experimented with a range of
transformations including array contraction, loop
unrolling, and a customized code generator for
matrix-vector multiplication. Figure 5 (p31)

shows the results on an Opteron™. The automat-
ically tuned code fragment is 1.5 times faster than
the hand-tuned Fortran version. PERI also exper-
imented with compiler-generated code for use of
Intel’s SSE-3 SIMD compute engine, achieving up
to a 1.23-fold speedup over the original, hand-
tuned code.

This experiment also illustrated the importance
of tuning the code in the context of the overall
application and pointed out the limitations of
tuning isolated kernels. When the autotuned code
was put back into the overall MADNESS applica-
tion, the entire application ran slightly slower
than before. The reason was that only one case
had been optimized, and the optimizations had
slowed down others. After discussion with the
code developer, PERI is ready to proceed to
achieve an overall improvement in the entire
application’s performance.

Application Engagement

The key long-term research objective of PERI is
to automate as much of the performance tuning
process as possible. Ideally in five years PERI will
produce a prototype of the kind of system that
will free scientific programmers from the burden
of tuning their codes, especially when simply
porting from one system to another. While this
may offer today’s scientific programmers hope
for a brighter future, it does little to help with the
immediate problems they face as they try to ready
their codes for petascale machines. PERI has
therefore created a third activity called applica-
tion engagement wherein PERI researchers will
bring their tools and skills to bear in order to help
DOE meet its performance objectives, and to
ground the Institute’s own research in practical
experience. PERI has a two-pronged application
engagement strategy.

The first strategy is establishing long-term liai-
son relationships with many of the application
teams. PERI liaisons who work with application
teams without significant, immediate perform-
ance optimization needs provide these applica-
tion teams with advice on how to collect
performance data and track performance evolu-
tion, and ensure that PERI becomes aware of any
changes in these needs. For application teams
with immediate performance needs, the PERI liai-
son works actively with the team to help them
meet their needs, utilizing other PERI personnel
as needed. The status of a PERI liaison activity,
passive or active, changes over time as the per-
formance needs of the application teams change.
As of June 2007, PERI is working actively with six
application teams and passively with ten others.
The nature of each interaction is specific to each
application team.

The key long-term
research objective of
PERI is to automate as
much of the
performance tuning
process as possible.

ScIDAC REVIEW WINTER 2007 WWW.SCIDACREVIEW.ORG

33

PERFORMANCE ENGINEERING

The tiger teams,
consisting of several
PERI researchers, strive

The GTC Tiger Team

to improve application
performance by
applying the full range
of PERI capabilities.

A more detailed description of the Gyrokinetic Turbulence
Code (GTC) Tiger Team further illustrates PERI application

engagement activities. GTC is a particle-in-cell (PIC) code
for gyrokinetic simulation of fusion plasmas for studying
turbulent transport. Figure 8 is an illustration of a self-
consistently generated electrostatic potential during the
non-linear phase of the turbulence. GTC’s developers
have the long-term performance goal of scaling the new
shaped version of GTC (GTC_s) to tens of thousands of
cores to enable simulation of ITER-size plasmas.

A core group of PERI researchers at the University of
Tennessee and Rice University, supplemented by
outside participants at the University of Oregon and
Texas A&M University, make up the PERI GTC Tiger
Team. This team is studying the performance

PUSHI e /3 .02.6%
I 00 . 721%

I 11.864%

I 6.384%

CHARGEI
POISSON
SMOOTH
SETUP N 2.673%

GET FLUXES . 2.518%
SHIFTI . 2.115%
MPI_Allreduce() . 2.038%
N_T_U_GROUP . 1.932%
MPI_Barrier() 10.799%
MPI_Sendrecv() B 0.744%
RESTART_WRITE 10.617%
GENERAL_FLUX_AVERAGE 1 0.483%
FIELD 10.396%
SNAPSHOT 10.329%
LOAD 10.314%
R2CFFTGL 10.181%
DO1FCF 10.151%
GTC 10.103%
MPI_Reduce() 10.092%
MPI_Gather() 10.091%
POISSON_INITIAL 10.073%
MPI_Bcast() 10.063%

characteristics of GTC and is collaborating with the code
developers on performance optimization of GTC_s. A
timing profile for a 64-processor run on the ORNL Cray
XT13/4 is shown in figure 7. Inter-process
communication is shown to take a minimal amount of
time. The PUSHI and CHARGEI routines implement a
scatter—gather algorithm that is a known performance
bottleneck. Initial hand optimization has improved the
performance of the scatter algorithm by approximately
10%. Current effort is focused on optimizing the data
layout—that is, the order in which the particles are
processed—to improve the cache and TLB performance
of the scatter—gather. In particular, researchers are
investigating a spacefilling curve approach to
re-ordering the particles in an optimal manner.

AIAOL "V INOILYHISNTT|

Figure 7. Mean time profile for GTC_s on 64 processors of Jaguar, ORNL'’s Cray XT3/4.

The other primary PERI application engage-
ment strategy involves tiger teams. A tiger team
works directly with application teams with
immediate, high-profile performance require-
ments. The tiger teams, consisting of several PERI
researchers, strive to improve application per-
formance by applying the full range of PERI capa-
bilities, including not only performance
modeling and automated tuning research but

also in-depth familiarity with today’s state-of-
the-art performance-analysis tools. Tiger team
assignments are of a relatively short duration,
lasting from six months to a year. As of June
2007, PERI tiger teams are working with two
application codes that will be part of the 2007
JOULE report, S3D and GTC_s (sidebar “The
GTC Tiger Team”). PERI has already identified
significant opportunities for performance

34

ScIDAC REVIEW WINTER 2007 WWW.SCIDACREVIEW.ORG

Figure 8. GTC_s image of the electrostatic potential in a plasma.

improvements on both applications. Current
work is focused on providing these improve-
ments through automated tools that support the
continuing code evolution required by the
JOULE criteria.

Summary

PERI was created to focus on the increasingly dif-
ficult problem of achieving high throughput on
large-scale scientific computing systems. These
performance challenges arise not only from the
scale and complexity of leadership-class comput-
ers, but also from the increasing sophistication of
today’s scientific software. Experience has shown
that scientists want to focus their programming
efforts on discovery and do not want to be bur-
dened by the need to constantly refine their codes
to maximize performance. Performance tools
that they can use themselves are not embraced,
but rather viewed as a necessary evil.

To relieve scientists from the burden of per-
formance tuning, PERI has embarked on a
research program addressing three different
aspects of performance tuning—performance
modeling of applications and systems, automatic
performance tuning, and application engagement
and tuning. PERT’s application engagement activ-
ities are intended to both help scientists address
today’s performance related problems, and auto-
matic performance tuning research will lead to
technology in the future that will significantly

reduce—and, possibly, someday eliminate—this
burden. Performance modeling informs both of
these activities.

Like all SciDAC-2 projects, PERI is a new proj-
ect, but it builds on five years of SciDAC-1
research and decades of prior work. PERT is off to
a good start, and its investigators have already
made contributions to SciDAC-2 and to DOE’s
2007 Joule codes. The PERI team looks forward
confidently to an era of petascale computing in
which scientific codes migrate amongst a variety
of leadership-class computing systems without
overburdening developers with the need to con-
tinually retune in order to achieve acceptable lev-
els of throughput. .

Contributors: Dr. David H. Bailey, LBNL; Dr. Robert Lucas
(PI), University of Southern California; Dr. Paul Hovland
and Dr. Boyana Norris, ANL; Dr. Kathy Yelcik and Dr. Dan
Gunter, LBNL; Dr. Bronis de Supinski and Dr. Dan
Quinlan, LLNL; Dr. Pat Worley, Dr. Jeff Vetter, and Dr. Phil
Roth, ORNL; Dr. John Mellor-Crummey, Rice University;
Dr. Allan-Snavely, University of California—San Diego;

Dr. Jeff Hollingsworth, University of Maryland; Dr. Dan
Reed, Dr. Rob Fowler, and Dr. Ying Zhang, University of
North Carolina; Dr. Mary Hall and Dr. Jacque Chame,
University of Southern California; Dr. Jack Dongarra and
Dr. Shirley Moore, University of Tennessee—Knoxville

Further Reading
http://www.peri-scidac.org

ScIDAC REVIEW WINTER 2007 WWW.SCIDACREVIEW.ORG

35

»
=3
£l
>
B
E

3
<
&
=
2
o
ES

